5,426 research outputs found

    1D-CapsNet-LSTM: A Deep Learning-Based Model for Multi-Step Stock Index Forecasting

    Full text link
    Multi-step stock index forecasting is vital in finance for informed decision-making. Current forecasting methods on this task frequently produce unsatisfactory results due to the inherent data randomness and instability, thereby underscoring the demand for advanced forecasting models. Given the superiority of capsule network (CapsNet) over CNN in various forecasting and classification tasks, this study investigates the potential of integrating a 1D CapsNet with an LSTM network for multi-step stock index forecasting. To this end, a hybrid 1D-CapsNet-LSTM model is introduced, which utilizes a 1D CapsNet to generate high-level capsules from sequential data and a LSTM network to capture temporal dependencies. To maintain stochastic dependencies over different forecasting horizons, a multi-input multi-output (MIMO) strategy is employed. The model's performance is evaluated on real-world stock market indices, including S&P 500, DJIA, IXIC, and NYSE, and compared to baseline models, including LSTM, RNN, and CNN-LSTM, using metrics such as RMSE, MAE, MAPE, and TIC. The proposed 1D-CapsNet-LSTM model consistently outperforms baseline models in two key aspects. It exhibits significant reductions in forecasting errors compared to baseline models. Furthermore, it displays a slower rate of error increase with lengthening forecast horizons, indicating increased robustness for multi-step forecasting tasks

    A novel decomposed-ensemble time series forecasting framework: capturing underlying volatility information

    Full text link
    Time series forecasting represents a significant and challenging task across various fields. Recently, methods based on mode decomposition have dominated the forecasting of complex time series because of the advantages of capturing local characteristics and extracting intrinsic modes from data. Unfortunately, most models fail to capture the implied volatilities that contain significant information. To enhance the prediction of contemporary diverse and complex time series, we propose a novel time series forecasting paradigm that integrates decomposition with the capability to capture the underlying fluctuation information of the series. In our methodology, we implement the Variational Mode Decomposition algorithm to decompose the time series into K distinct sub-modes. Following this decomposition, we apply the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model to extract the volatility information in these sub-modes. Subsequently, both the numerical data and the volatility information for each sub-mode are harnessed to train a neural network. This network is adept at predicting the information of the sub-modes, and we aggregate the predictions of all sub-modes to generate the final output. By integrating econometric and artificial intelligence methods, and taking into account both the numerical and volatility information of the time series, our proposed framework demonstrates superior performance in time series forecasting, as evidenced by the significant decrease in MSE, RMSE, and MAPE in our comparative experimental results

    Crude oil risk forecasting : new evidence from multiscale analysis approach

    Get PDF
    Fluctuations in the crude oil price allied to risk have increased significantly over the last decade frequently varying at different risk levels. Although existing models partially predict such variations, so far, they have been unable to predict oil prices accurately in this highly volatile market. The development of an effective, predictive model has therefore become a prime objective of research in this field. Our approach, albeit based in part on previous research, develops an original methodology, in that we have created a risk forecasting model with the ability to predict oil price fluctuations caused by changes in both fundamental and transient risk factors. We achieve this by disintegrating the multi-scale risk-structure of the crude oil market using Variational Mode Decomposition. Normal and transient risk factors are then extracted from the crude oil price using Variational Mode Decomposition and modelled separately using the Quantile Regression Neural Network (QRNN) model. Both risk factors are integrated and ensembled to produce the risk estimates. We then apply our proposed risk forecasting model to predicting future downside risk level in three major crude oil markets, namely the West Taxes Intermediate (WTI), the Brent Market, and the OPEC market. The results demonstrate that our model has the ability to capture downside risk estimates with significantly improved precision, thus reducing estimation errors and increasing forecasting reliability

    Improving forecasting accuracy of crude oil price using decomposition ensemble model with reconstruction of IMFs based on ARIMA model

    Get PDF
    The accuracy of crude oil price forecasting is more important especially for economic development and considered as the lifeblood of the industry. Hence, in this paper, a decomposition-ensemble model with the reconstruction of intrinsic mode functions (IMFs) is proposed for forecasting the crude oil prices based on the well-known autoregressive moving average (ARIMA) model. Essentially, the reconstruction of IMFs enhances the forecasting accuracy of the existing decomposition ensemble models. The proposed methodology works in four steps: decomposition of the complex data into several IMFs using EEMD, reconstruction of IMFs based on order of ARIMA model, prediction of every reconstructed IMF, and finally ensemble the prediction of every IMF for the final output. A case study was carried out using two crude oil prices time series (i.e. Brent and West Texas Intermediate (WTI)). The empirical results exhibited that the reconstruction of IMFs based on order of ARIMA model was adequate and provided the best forecast. In order to check the correctness, robustness and generalizability, simulations were carried out
    corecore