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Abstract 
 
The accuracy of crude oil price forecasting is more important especially for economic 
development and considered as the lifeblood of the industry. Hence, in this paper, a 
decomposition-ensemble model with the reconstruction of intrinsic mode functions (IMFs) is 
proposed for forecasting the crude oil prices based on the well-known autoregressive moving 
average (ARIMA) model. Essentially, the reconstruction of IMFs enhances the forecasting 
accuracy of the existing decomposition ensemble models. The proposed methodology works 
in four steps: decomposition of the complex data into several IMFs using EEMD, 
reconstruction of IMFs based on order of ARIMA model, prediction of every reconstructed 
IMF, and finally ensemble the prediction of every IMF for the final output. A case study was 
carried out using two crude oil prices time series (i.e. Brent and West Texas Intermediate 
(WTI)). The empirical results exhibited that the reconstruction of IMFs based on order of 
ARIMA model was adequate and provided the best forecast. In order to check the 
correctness, robustness and generalizability, simulations were carried out. 
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INTRODUCTION 
 

Oil is treated as the main energy source for economic development 

and lifeblood for industries. Unsurprisingly, most of the 

macroeconomic variables forecasts rely on the changes in crude oil 

prices like inflation. Furthermore, the price of crude oil futures heavily 

depends on past crude oil prices. However, in recent years the future of 

crude oil prices is very uncertain and very hard to quantify because of 

irregular events, speculation activities, global economic status, political 

and social activities. Therefore, forecasting the crude oil prices gain a 

considerable amount of attention from an academician, investors and 

government agencies. Thus, this paper concentrates on forecasting 

crude oil prices to examine the hidden components which caused the 

model execution as far as forecast accuracy and time. 

The current literature consisting of several time-series forecasting 

models which have been used for forecasting the world crude oil prices. 

The existing time series models can fall into three broader categories: 

(a) conventional econometric models (b) artificial intelligence (AI) 

techniques and (c) hybrid models. The traditional models are relatively 

simple but with strict assumptions of data, AI models are more 

adaptable with self-learning ability in model training and the hybrid 

models which are very famous now a day is the systematic combination 

of singles models.  

The most common models used for forecasting the crude oil prices 

which are also called traditional econometric models are ARIMA, 

random walk (RW), error correction model (ECM), generalized 

autoregressive conditional heteroscedasticity (GARCH) and vector 

auto-regression (VAR) models. Afterwards are the AI techniques 

which proved their superiority on the econometric models with the help 

of empirical investigations for forecasting the crude oil prices the most 

dominant techniques among the AI are artificial neural network (ANN) 

and least square support vector regression (LSSVR). However, 

nowadays the third type of models are widely used for forecasting the 

world crude oil prices. These models work under the concept of 

decomposition and ensemble (Wang et al., 2005) and predominant 

techniques used for forecasting crude oil prices are empirical mode 

decomposition (EMD), EEMD and wavelet transformation (WT).  

ARIMA model was used by (Xiang and Zhuang, 2013) to predict 

short-term Brent crude oil prices for the period spanning Nov 2012 to 

Apr 2013. GARCH family models were also used by (Nomikos and 

Andriosopoulos, 2012) for forecasting the crude oil prices and 

estimated the volatility and conditional mean of WTI daily data 

covering a period from Dec 9, 2000, to Jan 2, 2010. The VAR model 

was utilized by (Mirmirani and Cheng Li, 2004) to predict US crude oil 

prices for the monthly data from 1980 to 2002. For WTI and Brent 

weekly data (Lanza et al., 2005) incorporated the ECM approach 

covering a period from Jan 1994 to Jan 2002. The ANN technique was 

used by (Movagharnejad et al., 2011) to forecast the commercial prices 

of oil for Gulf region covering a period from Jan 2000 to Apr 2004. The 

evolutionary neural network was introduced by (Chiroma et al., 2015) 
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for forecasting the monthly WTI prices for the data from May 1987 to 

Dec 2011. SVR model was utilized for forecasting the monthly WTI 

prices for the data from Jan 1970 to Dec 2003 in addition (Xie et al., 

2006) also proved that SVR model outperforms back-propagation 

neural network (BPNN) and the well-known ARIMA models. SVR 

model was also used by (Khashman & Nwulu, 2011) and forecasted 

crude oil prices of WTI over the period spanning Jan 1986 to Dec 2009. 

LSSVR model was incorporated by (Li et al., 2013) and forecasted 

weekly crude oil prices of  WTI for a period spanning Jan 4, 2008, to 

Oct 18, 2013, and made a conclusion that LSSVR model performed 

better than SVR, BPNN, and well-known ARIMA models. However, 

these models have their own shortcomings, in conventional 

econometric models the problem of stationarity and linearity while in 

AI models the problem of sensitiveness in parameters and overfitting. 

Subsequently, next is the hybrid models which work with the idea 

of decomposition and ensemble. Decomposition and ensemble 

paradigms are very popular among researchers in recent time and very 

common in practice for forecasting the crude oil prices. The typical 

decomposition ensemble paradigms consist of three steps: 

simplification of complex data into different components, forecasting 

the individual components, and ensemble all forecasting components 

for final forecasting (Liu et al., 2013; Tang et al., 2012; Yu et al., 2008). 

The decomposition ensemble paradigms proved their superiority by 

producing low forecasting error or in other words, enhanced the 

forecasting accuracy. EMD model was incorporated by Yu et al., 

(2008) for forecasting the Brent and WTI daily crude oil prices and 

produced better results as compared to the traditional models, the data 

used in the study spanning May 20, 1987 to Sep 30, 2006 and Jan 01, 

1986 to Sep 30, 2006 respectively. Complementary ensemble EMD 

technique used by Tang et al., (2015) for forecasting the crude oil prices 

and the results demonstrated that the decomposition ensemble strategy 

is a better technique which enhanced forecasting accuracy. A novel 

learning paradigm was introduced by Yu et al., (2016) based on EEMD 

with an extended extreme learning machine for forecasting the WTI 

crude oil prices over the period spanning Jan 02, 1986 to Oct 21, 2013. 

All the studies proved that the decomposition and ensemble strategy is 

a better procedure for forecasting the crude oil prices.  

The complex data of crude oil prices effectively handled by hybrid 

decomposition ensemble models as compared to the non-hybrid 

models. However, an important issue arises of computational cost and 

model complexity. Because at the decomposition stage the original 

series be decomposed into components and modelled the individual 

series may consume more time and sometimes produced poor results. 

To solve this issue of an individual model, an additional step of 

reconstruction of IMFs would be introduced before modelling and 

forecasting the individual IMFs. In the reconstruction step, some of the 

IMFs combined with other IMFs for further analysis before the 

individual modelling of each IMF.  

Recently, some studies have been carried out on IMFs 

reconstruction concept which assured the importance of this technique. 

For example, EMD modes have been reconstructed by Shu-ping et al., 

(2014) into high, medium, low frequencies and in a trend sequence 

through run-length judgment method, this novel technique 

outperformed the decomposition ensemble results without 

reconstruction of IMFs in forecasting the crude oil prices. Yan et al., 

(2014) also reconstructed the EMD modes into groups by the method 

of fine-to-coarse for forecasting the uranium prices. Based on the 

sample entropy measurement the decomposed modes be reconstructed 

for wind speed data and a similar conclusion has been drawn (G. Zhang 

et al., 2014). EEMD paradigm modes was reconstructed by (Yu et al., 

2015) by using the “data-characteristic-driven” approach, the main data 

characteristics were data complexity (i.e. high and low) and pattern 

characteristics (i.e. cyclicity, mutability, and tendency), the empirical 

results showed that the reconstruction of modes enhanced the 

forecasting accuracy for both WTI and Brent weekly crude oil prices 

covering periods from Jan 03, 1986 to Jul 11, 2014, and Jan 01, 1986 

to Jul 11, 2014, respectively lastly Aamir and Shabri (2018) also 

reconstructed the EEMD modes into stochastic and deterministic 

components which enhanced the forecasting accuracy. In the above 

reconstruction of IMFs studies, they conducted the reconstruction of 

the modes based on some data characteristics i.e. average, frequency or 

complexity. To effectively capture some significant inner hidden 

factors of the decomposed IMFs a strong and simple analysis of the 

reconstruction of IMFs are strongly recommended. 

Under such a foundation, this paper aims to enhance the forecasting 

power of current decomposition ensemble models, particularly through 

reconstructions of IMFs. The proposed procedure for reconstruction of 

IMFs is the order of the ARIMA model. The reason behind the use of 

the order of ARIMA model is that, that after the first few IMFs there is 

no autoregressive pattern left in the rest of the IMFs, some of them 

follow the random walk pattern and some are deterministic curves. 

Thus, from this point, we got the motivation and wanted to focus on 

this issue. The proposed technique is very simple and comparatively 

less time consuming which significantly enhanced the forecasting 

accuracy of the crude oil prices. Based on the idea of reconstruction of 

IMFs through the order of the ARIMA model is interesting because to 

the best of our knowledge there is no model used to reconstruct the 

IMFs through a model. All previous techniques based on the data 

characteristics. The academic contribution of this study is the 

enhancement of the forecasting accuracy of the crude oil prices by 

putting less labor and getting more. The second advantage of this study 

is to consider another decomposition model as well by reconstructing 

their modes for better forecasting. The third contribution of the 

proposed reconstructing method is the simplification of the model 

selection for the new modes.    

For illustration and validation purpose, the two well-known crude 

oil prices were used as sample i.e. Brent and WTI. For comparison 

purposes, the most popular single ARIMA model, decomposition 

ensemble model without reconstruction of IMFs and other methods of 

reconstruction of IMFs were used as benchmark models. To check the 

correctness, robustness and generalizability of the proposed 

reconstruction of IMFs method simulations were also carried out. The 

rest of the paper is organized as follows: Section 2 describes the 

methodologies used in this study. Section 3 describes the data material, 

model development, real-world application, simulations, discussion, 

and results. The last section 4 concludes the paper and outline the future 

research work direction.       

METHODS USED IN THE STUDY  

ARIMA model 
The most popular procedure in the field of univariate time series 

analysis is Box-Jenkins ARIMA models (Montgomery et al., 2013) was 

introduced by Box and Jenkins (1976). In the last 50 years, this 

procedure has become very common and it is frequently used for 

forecasting the time series applications. The autoregressive (AR) and 

moving average (MA) models originate the ARIMA model. The current 

value of the time series using the AR model based on the pth previous 

values of the time series can be expressed as follows:  

 

           𝑌𝑡 = 𝜃0 + 𝜃1𝑌𝑡−1 + 𝜃2𝑌𝑡−2 + ⋯ + 𝜃𝑝𝑌𝑡−𝑝 + 𝜇𝑡                     (1) 

The MA model of order q modelled the random error. The current value 

of the time series is expressed as the current error at time t and qth 

previous values of the random error in the following formula. 

              𝑌𝑡 = 𝜇𝑡 − ∅1𝜇𝑡−1 − ∅2𝜇𝑡−2 − ⋯ − ∅𝑞𝜇𝑡−𝑞                       (2) 

The combined expression of AR and MA model makes the ARMA 

(p,q) process defined as follows:  

       𝑌𝑡 = 𝜃0 + 𝜃1𝑌𝑡−1 + 𝜃2𝑌𝑡−2 + ⋯ + 𝜃𝑝𝑌𝑡−𝑝 + 𝜇𝑡 − ∅1𝜇𝑡−1 −

∅2𝜇𝑡−2 − ⋯ − ∅𝑞𝜇𝑡−𝑞                                                                       (3) 

where 𝑌𝑡 is the observed or predicted value at time 𝑡, 𝑌𝑡−𝑗  are the 

observed previous values, 𝜃𝑗  are the coefficients of the previously 

observed time series values, ∅𝑗 are the coefficients of the previous 

white noises, 𝜇𝑡 is a white noise process normally distributed with zero 

mean and 𝛿2 variance and 𝜇𝑡−𝑗 are used for the previous noise terms.  

One of the strict assumptions of the ARMA model is stationarity, 

however, most of the time series is not stationary. To achieve 



 Aamir et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 14, No. 4 (2018) 471-483  

 

473 

stationarity the time series is differenced dth time. In practice, the 

difference operator d is usually taken as 0, 1, or 2 (Box et al., 2015). 

Thus, the ARIMA model of order (p, d, q) are as follows:    

          𝜔𝑡 = 𝜃1𝜔𝑡−1 + 𝜃2𝜔𝑡−2 + ⋯ + 𝜃𝑝𝜔𝑡−𝑝 + 𝜇𝑡 − ∅1𝜇𝑡−1 −

∅2𝜇𝑡−2 − ⋯ − ∅𝑞𝜇𝑡−𝑞                                                                      (4) 

where 𝜔𝑡 = 𝛻𝑑𝑌𝑡. If 𝑑 = 0, then 𝜔𝑡 = 𝑌𝑡 and equation (4) become an 

ARMA model. The theoretical background and detailed description of 

the ARIMA model can be found in (Box et al., 2015).  

The ensemble empirical mode decomposition  
The new opportunities of extracting the time differing components 

from data have provided by Huang et al., (1999) after the development 

of the transient local and adaptive method of EMD. The transient 

locality is one of the most important characteristics of EMD, which is 

acquired from the spline fitting through the minima and maxima of 

inputted information. The spline fitting has high transient territory and 

can be effortlessly confirmed utilizing numerical programming. The 

transient territory of EMD is all around saved if the number of sifting 

is smaller and fixed. Both transient territory and amplitude recurrence 

balance of oscillatory segments is worse by the excessive use of the 

sifting process of EMD. The non-stationarity assumption of the data 

automatically bypasses by the temporal locality of EMD which is one 

of the advantages of this procedure. The EMD procedure has some 

unique properties: (a) For EMD no basis function is required because 

the decomposition procedure is fully adaptive (b) EMD is a highly 

effective decomposition procedure because it is a scanty approach and 

works like a dyadic channel bank (Flandrin et al., 2004; Wu and Huang, 

2004, 2010) (c) For different signals, EMD accomplishes like a bank of 

spline wavelet of various orders (Flandrin and Goncalves, 2004; Wu 

and Huang, 2010) (d) EMD components of a given noise series share 

the same Fourier spectrum (except the first component) after rescaling 

amplitude and frequency (e) Everything except the primary EMD 

component of the noise follows normal distribution (Wu et al., 2016; 

Wu and Huang, 2004). Due to these interesting properties EMD 

naturally connects with the widely-used decomposition procedures like 

wavelet decomposition and Fourier spectrum-based filtering methods. 

The captivating possessions of EMD with extracting supremacy of 

physical information from data have eased a wide number of 

applications from different fields.  

For the physical interpretability of the outcomes, EMD locality 

provides the necessary condition but not sufficient. However, analysing 

the non-stationary data there are different restrictions on the physical 

interpretability of the outcomes. Among these restrictions, one is the 

sensitivity of the outcomes of analysis due to the noise contained in data 

because in actual data set the noise is universal. On the off-chance that 

the outcomes are not sensitive to little but rather not tiny noise, they are 

for the most part considered physically interpretable; else, they are 

definitely not. The extracted components of EMD becomes highly 

sensitive to the extrema (minima) distribution. Tragically, without 

noise locations of data and the extrema (minima) values changed due 

to the unknowing non-stationary noise confined in the data. An EMD 

approach comprises of proceeding with levels of extricating oscillatory 

segments of lower recurrence, the noise twisted outcomes at one level 

can prompt proceeding with bending of consequent oscillatory parts, 

making EMD comes about barely physically interpretable. This 

absence of robustness brought about the inadequacy of EMD. 

To conquer this robustness problem, several procedures have been 

adopted as (Huang et al., 1999) introduced the intermittency test. In 

such tests, variation in one component controlled, which leads to 

reducing the adaptiveness calls for more compelling methodologies. 

EEMD method was introduced by Wu and Huang (2009), a noise-

assisted data analysis technique which exactly fulfills the required 

challenge of robustness.   

The steps involved in EEMD are as following: (a) in a first step a 

white noise series is added to the original time series𝑌𝑡; (b) after adding 

the white noise decomposed the time series into components; (c) adding 

different white noise to the series and repeat step (a) and (b) again and 

again, and (d) obtained the ensemble means of the respective IMFs of 

the decompositions as the result. The white noise properties which are 

used by EEMD in these steps are: the distribution of maxima at any 

timescale be temporally uniform and EMD being effectively a twofold 

channel bank for white-noise (Flandrin et al., 2004; Wu and Huang, 

2004, 2010). The distribution of the added white-noise on all timescales 

of extrema distribution is relatively even. The second property of the 

added white noise which is twofold filter bank takes control of the 

oscillatory component, which reduces the chance of scale mixing in a 

component significantly. As a result, the decomposition becomes more 

stable and physically meaningful. 

Hybrid EEMD-ARIMA model  
The procedure of hybrid EEMD-ARIMA modelling can be 

summarized in the following steps (Wang et al., 2015).  

• The original time series be decomposed into 𝑘 components. 

• For each 𝑘𝑡ℎ component choose the best ARIMA model and 

predict every component accordingly.  

• Combined the output of all 𝑘 components for the targeted series.  

 

The main advantage of the decomposition and ensemble strategy is to 

simplify the task of predicting a series. The decomposed IMFs are easy 

to predict as compared to the original time series and additionally the 

forecasting accuracy is also improved. Which is one of the advantages 

of the decomposition and ensemble methodology? By hybridizing the 

two models ease the work at the computation stage and provided more 

efficient results because one issue is handled by one model and the 

other issue handled by the other model. That’s why hybridization is 

selected for best performance in this study.  

The proposed methodology  
In this study, the proposed methodology is the reconstruction of 

IMFs of EEMD. Firstly, the time series be decomposed into 𝑘 IMFs by 

EEMD. Next, choose the best order (𝑝, 𝑑, 𝑞) of ARIMA model for 

every 𝑘𝑡ℎ IMF based on the ACF, PACF graphs and for stationarity 

Augmented Dickey-Fuller (ADF) is used. As by the definition of IMFs, 

the first IMF has a high-frequency modulation as compared to the next 

proceeding IMF while the last IMF be completely deterministic. The 

problem is where to fix the bench line or cut off point. As we know that 

the class of ARMA models could handle cyclic behaviour and 

seasonality of a time series. Whenever 𝑝 > 1 of an ARMA(𝑝, 𝑞) model 

means there should be some problem of cyclicity and seasonality. So, 

the basic idea of the reconstruction of IMFs in this study is to handle 

individually all IMFs where the problem of cyclicity and seasonality 

exist and combine all those IMFs where this problem is not existing. 

Thus, in this work, a simple, criterion is designed for the bench line 

IMF. After obtaining all IMFs check the order of ARIMA model 

starting from IMF_1 to IMF_k and combine all those IMFs who fulfil 

this condition 𝑝 ≤ 1. Thus, for further analysis, the number of IMFs to 

be used is (𝑘 − 𝑛 + 1), where 𝑛 is the number of IMFs which is 

combined and make one IMF. Figure 1 illustrate the complete 

framework of the proposed study.  
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Fig. 1 Complete framework for the study. 

Simulations study  
The basic purpose of this study is the reconstruction of IMFs 

obtained from EEMD. For a better understanding of IMFs a time series 

𝑌𝑡 is created with additive noise from two different components called 

stochastic and deterministic. Sine function was used with an angular 

frequency equivalent to 2𝜋 to create a deterministic component while 

the stochastic component created with random process 𝜀(𝜇, 𝛿) 

following a standard normal distribution 𝑧(0,1). Hence, the noisy time 

series was obtained by summing both components i.e. 𝑌𝑡 = 𝑆𝑖𝑛(2𝜋𝑡) +
𝜀(0,1). So, this time series is used to generate the data for simulations 

(Rios & De Mello, 2013). Figure 2 represented the deterministic and 

stochastic components and the noisy time series.   

 

Fig. 2 (a) deterministic (2𝜋𝑡) , (b) Stochastic𝜀(0,1), components used to create the noisy time series 𝑌𝑡  (c) 𝑌𝑡 = 𝑆𝑖𝑛(2𝜋𝑡) + 𝜀(0,1). 

 

Evaluation criteria  
To check the proposed model competency with the other models 

used in this study would be measured by using three different 

evaluation criteria defined as follows:  

a) Mean Absolute Error (MAE) 

 

                                𝑀𝐴𝐸 =
1

𝑇
∑ |𝑌𝑡 − 𝑌̂𝑡|𝑇

𝑡=1                             (5)      

                                                                                     
b) Root Mean Square Error (RMSE) 

 

                              𝑅𝑀𝑆𝐸 =
1

𝑇
√∑ (𝑌𝑡 − 𝑌̂𝑡)2𝑇

𝑡=1                      (6) 

 

c) Mean Absolute Percentage Error (MAPE)  

 

                             𝑀𝐴𝑃𝐸 =  
1

𝑇
∑ |

𝑌𝑡−𝑌̂𝑡

𝑌𝑡
|𝑇

𝑡=1 × 100                  (7) 

 

where 𝑌𝑡 represents the original value at the given time 𝑡, 𝑇 used for a 

total number of predictions and 𝑌̂𝑡 represented the forecasted value at 

time 𝑡. The predicting model accuracy is one of the most important 

criteria when there are some other competing models. For the validation 

of the proposed method two weekly crude oil prices series are used. 

DATA MATERIAL, MODEL DEVELOPMENT, RESULTS AND 
DISCUSSIONS  

Overview of the data used in this study  
In this study, the two-well-known benchmark crude oil prices series 

are used for testing purpose i.e. WTI and Brent. The Brent data series 

comprising of 2440 weeks from February 01, 1970 to October 28, 2016, 
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and WTI data series comprising of 1764 weeks from January 30, 1983, 

to October 28, 2016. The reason behind the selection of two different 

periods is to check the generalizability and robustness of the proposed 

procedure that the proposed procedure performs well and produce 

efficient results in two different periods as well as with a different 

number of forecasts. The sample data of both crude oil prices 

distributed in two different groups i.e. training and testing. The training 

set consists of the first 80 per cent of the total observations while the 

last 20 per cent used as a testing set for model evaluation. Figure 3 

representing the plots of both data sets. It is clear from figure 3 that 

there is no seasonal effect on either of data sets and reflects the two 

effects i.e. trend and random. 

(a) Brent 

(b) WTI 

Fig. 3 The plot of the original crude oil prices of WTI and Brent. 

ARIMA modelling approach  
Generally, for time series forecasting the frequently used 

methodologies are Box-Jenkins (Box and Jenkins, 1976), ARMA(𝑝, 𝑞)
or ARIMA(𝑝, 𝑑, 𝑞) models. The requirements of the ARMA model is 

stationarity, meaning the time series should be with a constant mean 

level. However, if the time series is not stationary means having some 

trend, the ARIMA model would be used based on successive 

differences of the original series (Aamir and Shabri, 2016; Box et al., 

2015). To check stationarity Augmented Dickey-Fuller (ADF) (Elliott 

et al., 1996) test is used. There are four main steps when using ARMA 

models: identification of the accurate model, estimation of parameters, 

model checking and application. The most important step is the 

identification of the model carrying in two steps: to achieve stationarity 

appropriate number of differencing of the series is performed if 

necessary and determination of appropriate order of AR and MA terms. 

For the best order of AR and MA terms (Box and Jenkins, 1976) used 

the ACF and PACF as a basic tool, which is the basic review of the 

graphs. However, other criteria are also used to select the best model 

through theoretical approaches i.e. Akaike’s Information Criterion 

(AIC) (Shibata, 1976) and Bayes Information Criterion (BIC) 

(Schwarz, 1978). The third step is the model checking that the selected 

model is adequate or not through the Box-Ljung test (Ljung and Box, 

1978). The third step is the application which is presented in the 

subsequent sections.   

According to ACF and PACF graphs, the best ARIMA model for 

training data set of WTI crude oil price was of order (1,1,2) and for 

Brent (5,2,0). Both estimated ARIMA model parameters were highly 

significant and presented in Table 1. For model adequacy, the fitted 

model residuals were tested against the randomness, that the residuals 

are random or not. The p-values of the Box-Ljung test for both fitted 

models were (0.1094) and (0.1481) respectively. Which suggested that 

both model residuals distributed normally with 5% level of 

significance.    

The forecasting accuracy of ARIMA models was measured using 

three descriptive methods discussed in the preceding sections. To 

reflect the fitted model forecasting accuracy 324 observations of WTI 

and 445 observations of Brent crude oil prices were used as testing data 

sets. All forecasting accuracy measures are presented in Table 8 for 

both crude oil prices.        

http://www.foxitsoftware.com/shopping
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Table 1 Parameter estimation of ARIMA model for WTI and Brent series.

Decomposition of crude oil prices using EEMD  
The two parameters being set in advance when using EEMD which 

directly affect the decomposition algorithm. These parameters are the 

number of ensemble and white noise amplitude. The already existing 

rule among these parameters is described by equation (8) (Wu & 

Huang, 2009).  

                                          𝜀𝑘 =
𝑒

√𝑘
                                                              (8) 

where 𝑘 is the ensemble number, 𝜀𝑘 represented the standard deviation 

of error and 𝑒 used for added white noise amplitude. The added white 

noise amplitude should not be too small or too large. If the amplitude 

is too small, then it may not change the extrema/minima of the EMD in 

a result produced the same IMFs as produced by EMD. On another side, 

if the amplitude is too large in result it produced some redundant IMFs. 

Wu and Huang (2009) suggested based on experimental observations 

that the amplitude of the added white noise is around 0.2 times of the 

sample standard deviation. Zhang et al., (2010) also investigated the 

parameter settings of the EEMD algorithm for different applications but 

their findings for adding white noise amplitude was not different than 

the (Wu and Huang, 2009). The EEMD strategy is employed in this 

study with the white noise amplitude of 0.2 times standard deviation 

and the ensemble number equal to 100. More details can be found about 

the ensemble number and amplitude of noise in the work of (Wu and 

Huang, 2009).  

EEMD technique can be employed to both weekly crude oil prices 

time series using the above description. Both the crude oil prices series 

were decomposed into 9 IMFs and one residue. All IMFs and residue 

were independent, and their plots are shown in figure 4. From figure 4 

(a) and (b) clears that IMF1, IMF2, and IMF3 have the highest 

frequency, maximum amplitude, and low wavelength. After the IMF3, 

the subsequent IMFs changing their frequencies and amplitude from 

maximum to minimum, wavelength from minimum to maximum. 

While the last component residue is a mode varying slowly around the 

long-term average and shows the overall trend of the time series. 

EEMD decomposition provided meaningful decomposition whereas 

the decomposition for each instance is totally independent of other 

instants and consisting with the neighbouring instants (Debert et al.,  

2011). Thus, the decomposition is very much helpful to transform non-

linear and non-stationary time series into stationary series and used to 

improve the forecasting performance.  

(a) WTI 

(b) Brent 

Fig. 4 IMFs and Residual plot of WTI and Brent series. 

Parameters  Estimate t-value p-value 

WTI (1,1,2) 

𝜃1 0.8831 25.2845 < 0.0001 

𝜇1 -0.9325 -21.2983 < 0.0001 

𝜇2 0.0979 3.6186 0.00030 

Brent (5,2,0) 

𝜃1 -0.8493 -38.3817 < 0.0001 

𝜃2 -0.6252 -21.9562 < 0.0001 

𝜃3 -0.4593 -15.2652 < 0.0001 

𝜃4 -0.3172 -11.0912 < 0.0001 

𝜃5 -0.1705 -7.5852 < 0.0001 
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Reconstruction of IMFs  
The proposed methodology in this study is the reconstruction of 

IMFs. In the first step, the original time series was decomposed into 𝑘
components called IMFs by EEMD. Next, we choose the best order 

(𝑝, 𝑑, 𝑞) of ARIMA model for every 𝑘𝑡ℎ component using the AIC 

criterion discussed in the previous section of ARIMA modelling. The 

order of each ARIMA model for all IMFs of both crude oil prices is 

presented in Table 2. The order of differencing of every model is 

different in Table 2 because some of the series are stationary when a 

series a stationary then no need to take the difference of that series. A 

time series having a constant mean, variance and autocorrelation over 

the time called stationary time series. Thus, first six in WTI and seven 

IMFs in Brent data are stationary by using ADF test and the rest of the 

IMFs are not stationary in both data sets. The difference operator is 

used to make the series stationary before applying the ARIMA model.      

Table 2 Order of ARIMA model of all IMFs for both data sets. 

IMFs WTI Brent 

1 ARIMA(4,0,3)  with zero mean ARIMA(2,0,3)  with zero mean 

2 ARIMA(4,0,3)  with zero mean ARIMA(4,0,4)  with zero mean 

3 ARIMA(4,0,3)  with zero mean ARIMA(5,0,5)  with zero mean 

4 ARIMA(1,0,0) *with zero mean ARIMA(1,0,0) *with zero mean 

5 ARIMA(0,0,0)  with non-zero mean ARIMA(0,0,0)  with non-zero mean 

6 ARIMA(0,0,0)  with non-zero mean ARIMA(0,0,0)  with non-zero mean 

7 ARIMA(0,1,0)  with drift ARIMA(0,0,0)  with non-zero mean 

8 ARIMA(0,2,0) ARIMA(0,2,0) 

9 ARIMA(0,2,0) ARIMA(1,2,0) 

10 ARIMA(0,2,5) ARIMA(1,2,0) 

                                           * 𝑝 ≤ 1 

The ARIMA model fits for all the IMFs using their respective order 

mentioned in Table 2. As by the definition of IMFs, the first IMF has a 

high-frequency modulation as compared to the next proceeding IMF 

while the last IMF has been a completely deterministic component. So, 

the fitted model accuracy needs to increase as the number of IMF 

increases. For instance, IMF 1 has a less forecasting accuracy as 

compared to IMF 2 and IMF 2 has less forecasting accuracy as IMF 3 

and so on while the last IMF called residue has the highest forecasting 

accuracy. The forecasting accuracy measures are presented in Table 3 

for all individual IMFs.    

Table 3 Forecasting accuracy measures of IMFs using ARIMA model for testing data. 

IMFs 
WTI Brent 

MAE RMSE MAE RMSE 

1 0.6363 0.8062 0.7041 0.9275 

2 0.1640 0.2091 0.1970 0.2611 

3 0.0258 0.0330 0.0330 0.0424 

4 0.5409 0.6420 0.5919 0.7861 

5 3.1299 3.8812 5.0140 6.8133 

6 6.3486 7.4920 6.9270 8.2109 

7 0.1426 0.1565 9.4175 10.651 

8 0.0008 0.0014 0.0011 0.0015 

9 0.0003 0.0007 0.0001 0.0006 

10 0.0003 0.0049 0.0002 0.0039 

From Table 3 it is observed that the forecasting accuracy of IMF 5 and 

IMF 6 is very low for WTI data and as compared to IMF 1 to IMF 4. It 

indicates that the ARIMA model is not a suitable choice for IMF 5 and 

IMF 6. For Brent data, the forecasting accuracy of IMF 4 to IMF 7 is 

very low as compared to the IMF 1 to IMF 4. So, the IMFs of both data 

sets did not follow the definition of IMFs regarding the forecasting 

accuracy of the models. The definition of IMFs is that the IMF 1 has 

more stochastic as compared to IMF 2 while the last IMF should be 

more deterministic as compared to the second last IMF and so on. 

Hence, the main objective of this study is to reconstruct the IMFs 

according to their definition and aimed to increase the forecasting 

accuracy as well.  

Figure 5 shows the plot of the forecasting accuracy measures MAE and 

RMSE for all IMFs for both data sets.  

In Figure 5 the red line represented the MAE and RMSE of the IMFs 

having very low forecasting accuracy in all IMFs.  

It is observed from Table 2 that the ARIMA model parameters 𝑝
for 4th and onwards IMFs are less than or equal to 1. Thus, the condition 

𝑝 ≤ 1is satisfied by 4th to 10th IMF. So according to the proposed rule, 

all these IMFs be combined for further analysis. Thus, the total number 

of IMFs to be used for further analysis is 4 and plotted in Figure 6 for 

both data sets.   
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Fig. 5 Forecasting accuracy measures of individual IMFs. 

  

(a) WTI 

 

(b) Brent 

 

Fig. 6 Reconstructed IMFs of WTI and Brent series. 

 



Aamir et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 14, No. 4 (2018) 471-483  

479 

Using the information in Table 4 the respective ARIMA model were 

fitted for both WTI and Brent IMFs and their respective forecasting 

accuracy measures were also calculated.  

Table 4 Order of the ARIMA models after reconstructed IMFs. 

IMFs WTI Brent 

1 ARIMA(4,0,3) with zero 
mean 

ARIMA(2,0,3) with zero 
mean 

2 ARIMA(4,0,3) with zero 
mean 

ARIMA(4,0,4) with zero 
mean 

3 ARIMA(4,0,3) with zero 
mean 

ARIMA(5,0,5) with zero 
mean 

4 ARIMA(4,1,5)  ARIMA(3,2,4) 

Table 5 presented the forecasting accuracy measures of the 

reconstructed IMFs. The IMF 1, 2 and 3 are same but the reconstructed 

IMF is 4. From Table 5 the MAE of IMF 4 is 0.0030 and RMSE are 

0.0055 and the forecasting accuracy has increased more than 1000 per 

cent as compared to without reconstruction of IMF 4 for WTI data. For 

Brent data, the same results were found for IMF 4 and presented in 

Table 5. 

Table 5 Forecasting accuracy measures of the reconstructed IMFs for 
testing data.  

IMFs 
WTI Brent 

MAE RMSE MAE RMSE 

1 0.6363 0.8062 0.7041 0.9275 
2 0.1640 0.2091 0.1970 0.2611 
3 0.0258 0.0330 0.0330 0.0424 
4 0.0030 0.0055 0.0046 0.0093 

The MAE and RMSE of reconstructed IMFs for both data sets were 

plotted in figure 7. From Figure 6 the forecasting accuracy measures 

MAE and RMSE for both data sets follow the definition of IMFs. The 

IMF 1 has less forecasting accuracy as compared to IMF 2 and so on 

while the last IMF has the highest forecasting accuracy as compared to 

the rest of IMFs for both WTI and Brent data sets. In the next section, 

the overall performance of all IMFs and reconstructed IMFs are 

discussed in detail.   

Fig. 7 Forecasting accuracy measures of the reconstructed IMFs for testing data. 

Simulations  

In this section, an experimental analysis is developed to illustrate 

the proposed procedure. Initially, the EEMD is used to decompose the 

time series 𝑌𝑡 into IMFs. The experiment was repeated for different 

sample sizes i.e.  𝑛 = 500,1000,2000, 𝑎𝑛𝑑 5000 where 𝑛 is the 

number of observations in each time series. The same 80% and 20% 

ratio were used for training and testing data sets. In the next step, the 

order of the ARIMA model (applying all steps) is chosen for every 𝑘𝑡ℎ 

IMF. Table 6 presenting the order of all ARIMA models for all sample 

sizes. From Table 6, it is observed that after few IMFs the order of 

ARIMA model decreased abruptly. Thus, the condition 𝑝 ≤ 1is 

satisfied by every sample and concluded that every decomposed data 

fulfil the proposed criteria of reconstruction of IMFs. Hence, 

simulations study also supported the reconstruction theory of IMFs 

proposed in this piece of work.   
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Table 6 Order of ARIMA (𝑝, 𝑑, 𝑞) model for 𝑌𝑡 = 𝑆𝑖𝑛(2𝜋𝑡) + 𝜀(0,1). 

IMFs 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟐𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎𝟎 

1 (2,0,1) with zero mean (3,0,3) with zero mean (3,0,1) with zero mean (3,0,1) with zero mean 

2 (4,0,4) with zero mean (4,0,3) with zero mean (5,0,5) with zero mean (4,0,3) with zero mean 

3 (5,0,5) with zero mean (4,0,5) with zero mean (5,0,3) with zero mean (4,0,5) with zero mean 

4 (1,0,0) with zero mean (5,0,3) with zero mean (5,0,5) with non-zero 

mean 

(5,0,4) with zero mean 

5 (0,0,0) with zero mean (0,0,0) with non-zero 

mean 

(0,0,0) with zero mean (4,0,5) with zero mean 

6 (0,1,4) (0,0,0) with non-zero 

mean 

(0,0,0) with non-zero 

mean 

(0,0,0) with zero mean 

7 (0,2,4) (0,2,0) (0,0,0) with zero mean (0,0,0) with zero mean 

8 (0,2,5) (0,2,4) (0,2,0) (0,0,0) with zero mean 

9  (0,2,5) (0,2,5) (0,2,0) 

10   (0,2,5) (0,2,0) 

11    (0,2,0) 

12    (0,2,5) 

Analysis and results discussions  
In this section, the overall results of all models are discussed in 

detail. The three descriptive measures MAE, RMSE, and MAPE were 

used for validation of the performance of the models. The six models 

were fitted for both data sets namely, individual ARIMA, EEMD-

ARIMA (without reconstruction of IMFs), EEMD-SD-ARIMA (with 

reconstruction of IMFs into stochastic and deterministic (Rios and De 

Mello, 2013)), EEMD-HML-ARIMA (with reconstruction of IMFs 

into high, medium and low frequencies (Shu-ping et al., 2014)), 

EEMD-FC-ARIMA (with reconstruction of IMFs from fine to coarse 

(Yan et al., 2014)) and the last is the proposed method EEMD-PQ-

ARIMA (with reconstruction of IMFs based on order of Autoregressive 

term). Table 7 presenting the number of reconstructed IMFs based on 

different procedures and the same used for forecasting of both crude oil 

prices.   

 

Table 7 Reconstruction of IMFs based on different methods. 

DATA Model IMF-1 IMF-2 IMF-3 IMF-4 

Brent EEMD-PQ-ARIMA 1 2 3 4 – 10 

EEMD-FC-ARIMA 1 – 5 6 – 9 10  

EEMD-HML-ARIMA 1 – 3 4 – 8 9 – 10  

EEMD-SD-ARIMA 1 – 5 5 – 10   

WTI EEMD-PQ-ARIMA 1 2 3 4 – 10 

EEMD-FC-ARIMA 1 – 4 5 – 9 10  

EEMD-HML-ARIMA 1 – 3 4 – 7 8 – 10  

EEMD-SD-ARIMA 1 – 4 5 – 10   

The fitted model's accuracy is presenting in Table 8. From Table 8 it is 

observed that the performance of the model EEMD-ARIMA was worst 

as compared to the individual ARIMA, EEMD-SD-ARIMA, EEMD-

HML-ARIMA, EEMD-FC-ARIMA and EEMD-PQ-ARIMA model. 

The reason behind that poor performance is the misuse of the ARIMA 

model for the IMFs stated in Table 3 highlighted with the red dotted 

line because for all IMFs the ARIMA model is not suitable. The 

forecasting accuracy of all the reconstruction of IMFs procedure 

increased as compared to the single ARIMA model. In the 

reconstruction of IMFs methods, the performance of the EEMD-SD-

ARIMA and EEMD-FC-ARIMA models are almost the same but not 

better than the EEMD-HML-ARIMA model. Next is the performance 

evaluation of the proposed EEMD-PQ-ARIMA model. The forecasting 

accuracy of the EEMD-PQ-ARIMA model increased significantly and 

outperform all the other reconstruction of IMFs technique. The 

forecasting accuracy of the proposed EEMD-PQ-ARIMA model has 

been increased more than 100 per cent for all accuracy measures for 

both crude oil prices. 
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Table 8 Fitted model accuracy measurements for training datasets. 

Model 
WTI Brent 

MAE RMSE MAPE MAE RMSE MAPE 

ARIMA 1.25 2.06 3.73 0.78 1.36 2.99 

EEMD-ARIMA 1.62 2.80 4.50 1.14 1.82 4.10 

EEMD-SD-ARIMA  1.23 2.03 3.73 0.70 1.16 3.42 

EEMD-HML-ARIMA 0.91 1.43 2.76 0.58 0.90 3.02 

EEMD-FC-ARIMA 1.23 2.03 3.73 0.76 1.23 3.76 

EEMD-PQ-ARIMA 0.45 0.61 1.60 0.38 0.50 2.23 

The forecasting accuracy measures for all the six fitted models for both 

data sets were plotted in Figure 8. Figure 8 indicated that the proposed 

EEMD-PQ-ARIMA model performed well as compared to the 

individual ARIMA, EEMD-ARIMA, EEMD-SD-ARIMA, EEMD-

HML-ARIMA and EEMD-FC-ARIMA model for training data sets of 

both crude oil prices.   

 

 
 

Fig. 8 Forecasting accuracy measures of the training data sets. 

 

The next is the most important comparison of the six competing models 

with respect to the forecasting accuracy for testing data sets. Table 9 

presenting the forecasting accuracy of all models for WTI and Brent 

data. From Table 9 it is observed that the forecasting accuracy of the 

EEMD-ARIMA model was very low as compared to the ARIMA, 

EEMD-SD-ARIMA, EEMD-HML-ARIMA and EEMD-FC-ARIMA 

and EEMD-PQ-ARIMA model for all three descriptive measures. As 

compared to the ARIMA, EEMD-ARIMA, EEMD-SD-ARIMA, 

EEMD-HML-ARIMA and EEMD-FC-ARIMA models the 

performance of the EEMD-PQ-ARIMA model has improved more than 

two hundred per cent for all the evaluation measures. Which shows that 

the proposed model improves the forecasting accuracy of both data sets 

significantly. 

 

Table 9 Forecasting accuracy measurements for testing data sets. 

Model 
WTI Brent 

MAE RMSE MAPE MAE RMSE MAPE 

ARIMA 2.30 3.07 3.18 2.68 3.59 3.53 

EEMD-ARIMA 2.76 3.69 3.89 3.34 4.68 4.70 

EEMD-SD-ARIMA 2.25 2.94 3.14 2.37 3.14 3.15 

EEMD-HML-ARIMA 1.80 2.29 2.47 1.90 2.47 2.47 

EEMD-FC-ARIMA 2.26 2.95 3.15 2.64 3.53 3.49 

EEMD-PQ-ARIMA 0.65 0.81 0.89 0.69 0.88 0.92 

For a clearer picture of the forecasting accuracy, all the measures MAE, 

RMSE, and MAPE are also plotted in figure 9. From figure 9, it is 

observed that the performance of the EEMD-PQ-ARIMA model with 

the new proposed method of reconstruction of IMFs was far better than 

the ARIMA, EEMD-ARIMA, EEMD-SD-ARIMA, EEMD-HML-

ARIMA and EEMD-FC-ARIMA models.  
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Fig. 9 Forecasting accuracy measures of testing data sets. 

Subsequently, the comparison of the forecasted values of the testing 

data sets of ARIMA and proposed model EEMD-PQ-ARIMA with the 

original data are presenting in Figure 10 for both data sets. Figure 10 

(a) presenting the WTI data and exhibited biannually on the plot. From 

the figure, the EEMD-PQ-ARIMA model forecasted values are very 

much close to the original data and adjust quickly to follow the pattern 

of the data, next is the ARIMA model whose graph also showed some 

good forecasts but it values not adjusted that much quicker as compared 

to EEMD-PQ-ARIMA model to follow the pattern. For a clearer 

picture, the last 6 months original and forecasted values were more 

focused and present in the new graph. In the new graph, the last 6 

months data exhibited on two weekly bases. The new graph showed a 

clearer picture of the fitted model forecasted values with the original 

testing series of WTI. It is observed from the new graph that the 

proposed model EEMD-PQ-ARIMA forecasted values were closer to 

the original data and moving in the same direction of the original series.  

In other words, the proposed model has the ability of quick recovery of 

the pattern of the data and adjust the values and produce a more accurate 

forecast for the future as compared to single ARIMA model. 

Figure 10 (b) presenting the Brent crude oil price original testing 

series and the forecasted values of the fitted models. From the figure, it 

is observed that the proposed EEMD-PQ-ARIMA model forecasted 

values are very much close to original data. The weekly original data 

was exhibited bi-annually on the graph. For the clearer relationship 

between the original data and the forecasted values of all the models 

the last 10 months data were more focused and plotted in the new graph 

distinguishing it with a different colour. In the new graph, the 

relationship is clearer, and the data exhibited on three weekly bases. 

The forecasted values of the proposed EEMD-PQ-ARIMA model are 

closer to the original data as compared to the ARIMA model. Thus, 

figure 10 (a) and (b) showed that the proposed model EEMD-PQ-

ARIMA performed well and produced more accurate forecasts for the 

future. 

(a) WTI 

(b) Brent 

Fig. 10 Plot of the forecasted values of different models.

http://www.foxitsoftware.com/shopping


 Aamir et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 14, No. 4 (2018) 471-483  

 

483 

CONCLUSION  

A new method of reconstruction of IMFs was proposed in this study 

to improve the forecasting accuracy of the crude oil prices. Two 

different crude oil prices datasets were used to check the performance 

of the proposed procedure. The empirical results showed that the 

decomposition ensemble methodology was effective. However, the 

MAE, RMSE and MAPE results indicated that the reconstruction of 

IMFs was the more effective approach for improving the forecasting 

accuracy of crude oil prices based on order of the ARIMA model. There 

are several advantages of the proposed approach: Firstly, the essential 

rule of the EEMD is extremely straightforward which can give a better 

understanding of the inner factors in crude oil prices. Secondly, the 

reconstruction of IMFs avoids the problem of non-zero mean in IMFs 

which is helpful to carry out ARIMA modelling. Thirdly, ARIMA 

prediction requires just data of the crude oil prices being referred to. 

Fourthly, the proposed model needs less computational time. Finally, 

the proposed EEMD-PQ-ARIMA model does not require complex 

decision-making about the unequivocal form of models for each case. 

In this way, building up a reconstructed mixture model may prompt 

more precise and stable estimating comes about, and might be useful 

for determining the crude oil prices time series for an extensive variety 

of issues identified with the successful value administration. 

In addition to crude oil price data, the proposed methodology 

should be applied to a more complex task of forecasting to test its 

generalizability and robustness and especially to nonlinear data. 

Furthermore, based on the reconstruction of the IMFs idea, other more 

powerful decomposition ensemble models should be developed 

accordingly, for individual model prediction as well as for ensemble 

model predictions. An attempt will be carried out soon.     
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