1,523 research outputs found

    Comparison of nonhomogeneous regression models for probabilistic wind speed forecasting

    Full text link
    In weather forecasting, nonhomogeneous regression is used to statistically postprocess forecast ensembles in order to obtain calibrated predictive distributions. For wind speed forecasts, the regression model is given by a truncated normal distribution where location and spread are derived from the ensemble. This paper proposes two alternative approaches which utilize the generalized extreme value (GEV) distribution. A direct alternative to the truncated normal regression is to apply a predictive distribution from the GEV family, while a regime switching approach based on the median of the forecast ensemble incorporates both distributions. In a case study on daily maximum wind speed over Germany with the forecast ensemble from the European Centre for Medium-Range Weather Forecasts, all three approaches provide calibrated and sharp predictive distributions with the regime switching approach showing the highest skill in the upper tail

    Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models

    Get PDF
    In the field of renewable energy, reliability analysis techniques combining the operating time of the system with the observation of operational and environmental conditions, are gaining importance over time. In this paper, reliability models are adapted to incorporate monitoring data on operating assets, as well as information on their environmental conditions, in their calculations. To that end, a logical decision tool based on two artificial neural networks models is presented. This tool allows updating assets reliability analysis according to changes in operational and/or environmental conditions. The proposed tool could easily be automated within a supervisory control and data acquisition system, where reference values and corresponding warnings and alarms could be now dynamically generated using the tool. Thanks to this capability, on-line diagnosis and/or potential asset degradation prediction can be certainly improved. Reliability models in the tool presented are developed according to the available amount of failure data and are used for early detection of degradation in energy production due to power inverter and solar trackers functional failures. Another capability of the tool presented in the paper is to assess the economic risk associated with the system under existing conditions and for a certain period of time. This information can then also be used to trigger preventive maintenance activities

    Integration of renewable energy into Nigerian power systems

    Get PDF
    Many countries are advancing down the road of electricity privatization, deregulation, and competition as a solution to their growing electricity demand and other challenges posed by the monopolistic nature of the existing structure. Presently, Nigeria has a supply deficit of electricity as a result of the growing demand. This imbalance has negatively affected the economy of the country and the social-economic well-being of the population. Hence, there is an urgent need to reform the power sector for greater efficiency and better performance. The objectives of the reform are to meet the growing power demand by increasing the electric power generation and also by increasing competitiveness through the participation of more private sector entities. The renewable energy integration is one way of increasing the electricity generation in the country in order to cater for the growing demand adequately. Examples of the renewable energy that is available in the country include wind, geothermal, solar and hydro. They are considered to be environmentally friendly, replenishable and do not contribute to the climate change phenomena. The country presently generates the bulk of its electricity from both thermal (85%) and hydroelectric (15%) power plants. While electricity generation from the thermal power stations constitutes the largest share of greenhouse emission, this is mostly from burning coal and natural gas. The effect of this high proportion of greenhouse emission causes climate change which is referred to as a variation in the climate system statistical properties over a long period of time. It has been observed that many of the activities of human beings are contributory factors to the release of these greenhouse gases (GHG). But, as the traditional sources of energy continue to threaten the present and future existence on the planet earth, it is, therefore, imperative to increase the integration of the variable renewable energy sources in a sustainable and eco-friendly manner over a long period of time. The variability and the uncertainties of the renewable energy source's output, present a major challenge in the design of an efficient electricity market in a deregulated environment. The system deregulation and the use of renewable sources for the generation of electricity are major changes presently being experienced in power system. In a deregulated power system, the integration of renewable generation and its penetration affects both the physical and the economic operations. The main focus of this research is on the integration of wind energy into Nigerian power systems. Up till now, research on the availability of the wind energy and its economic impacts has been limited in Nigeria. Generally, the previous study of wind energy availability in Nigeria has been limited in scope. The wind energy assessment study has not been detailed enough to be able to ascertain the wind energy potential of the country. To cope with this shortcoming, a detailed statistical wind modeling and forecasting methodology have been used in this thesis to determine the amount of extractable wind energy in six selected locations in Nigeria using historical wind speed data for 30 years. The accuracy test of the statistical models was also carried using the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Chi-Square methods to determine the inherent error margin in the modeling and analysis. It is found that the error margin of the evaluations falls within the expected permissible tolerance range. For a more detailed wind assessment study of the Nigeria weather, the seasonal variation of the weather conditions as it affects the wind speed and availability during the two major seasons of dry and rainy was considered. A Self-Adaptive Differential Evolution (SADE) was used to solve the economic load dispatch problem that considers the valve-point effects and the transmission losses subject to many constraints. The results obtained were compared with those obtained using the "standard" Differential Evolution (DE), Genetic Algorithm (GA), and traditional Gradient Descent method. The results of the SADE obtained when compared with the GA, DE, and Gradient descent show the superiority of SADE over all the other methods. The research work shows that the wind energy is available in commercial quantity for generation of electricity in Nigeria. And, if tapped would help reduce the gap between the demand and supply of electricity in the country. It was also demonstrated that the wind energy integration into the power systems affects the generators total production cost

    Vertical wind profile characterization and identification of patterns based on a shape clustering algorithm

    Get PDF
    Wind power plants are becoming a generally accepted resource in the generation mix of many utilities. At the same time, the size and the power rating of individual wind turbines have increased considerably. Under these circumstances, the sector is increasingly demanding an accurate characterization of vertical wind speed profiles to estimate properly the incoming wind speed at the rotor swept area and, consequently, assess the potential for a wind power plant site. The present paper describes a shape-based clustering characterization and visualization of real vertical wind speed data. The proposed solution allows us to identify the most likely vertical wind speed patterns for a specific location based on real wind speed measurements. Moreover, this clustering approach also provides characterization and classification of such vertical wind profiles. This solution is highly suitable for a large amount of data collected by remote sensing equipment, where wind speed values at different heights within the rotor swept area are available for subsequent analysis. The methodology is based on z-normalization, shape-based distance metric solution and the Ward-hierarchical clustering method. Real vertical wind speed profile data corresponding to a Spanish wind power plant and collected by using a commercialWindcube equipment during several months are used to assess the proposed characterization and clustering process, involving more than 100000 wind speed data values. All analyses have been implemented using open-source R-software. From the results, at least four different vertical wind speed patterns are identified to characterize properly over 90% of the collected wind speed data along the day. Therefore, alternative analytical function criteria should be subsequently proposed for vertical wind speed characterization purposes.The authors are grateful for the financial support from the Spanish Ministry of the Economy and Competitiveness and the European Union —ENE2016-78214-C2-2-R—and the Spanish Education, Culture and Sport Ministry —FPU16/042

    Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms - A Review

    Get PDF
    In the wind energy industry, the power curve represents the relationship between the “wind speed” at the hub height and the corresponding “active power” to be generated. It is the most versatile condition indicator and of vital importance in several key applications, such as wind turbine selection, capacity factor estimation, wind energy assessment and forecasting, and condition monitoring, among others. Ensuring an effective implementation of the aforementioned applications mostly requires a modeling technique that best approximates the normal properties of an optimal wind turbines operation in a particular wind farm. This challenge has drawn the attention of wind farm operators and researchers towards the “state of the art” in wind energy technology. This paper provides an exhaustive and updated review on power curve based applications, the most common anomaly and fault types including their root-causes, along with data preprocessing and correction schemes (i.e., filtering, clustering, isolation, and others), and modeling techniques (i.e., parametric and non-parametric) which cover a wide range of algorithms. More than 100 references, for the most part selected from recently published journal articles, were carefully compiled to properly assess the past, present, and future research directions in this active domain

    A Technical Review on Reliability and Economic Assessment Framework of Hybrid Power System with Solar and Wind Based Distributed Generators

    Get PDF
    Recent years have witnessed an upsurge in the penetration of solar and wind power. This can be chiefly attributed to worldwide climate concern and inclination towards low carbon sources. Owing to their abundant availability, solar and wind sources are projected to play a key part in de-carbonization of power sector. However, the variability of these sources and high initial cost pose a major challenge in their deployment. Thus, reliability and economic assessment is imperative to hybrid power system(HPS) with solar and wind integration. This paper tenders a survey on different aspects involved in reliability and economic assessment of HPS. Various techniques employed in uncertainty modelling of climatological parameters like solar irradiance and wind velocity have been deliberated. A detailed discussion on reliability evaluation parameters as well as techniques along with their merits and demerits has been carried out. In order to impart a sense of extensiveness to review, a discussion on economic evaluation metrics has also been presented. Further, author’s critical comments on review along with suggestions for possible research avenues has also been presented. The review presented in this paper is envisioned to facilitate a comprehensive guide towards evaluation of solar and wind energy based HP

    Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems:A Review

    Get PDF
    Renewable energy sources (RESs) are the replacement of fast depleting, environment polluting, costly, and unsustainable fossil fuels. RESs themselves have various issues such as variable supply towards the load during different periods, and mostly they are available at distant locations from load centers. This paper inspects forecasting techniques, employed to predict the RESs availability during different periods and considers the dispatch mechanisms for the supply, extracted from these resources. Firstly, we analyze the application of stochastic distributions especially the Weibull distribution (WD), for forecasting both wind and PV power potential, with and without incorporating neural networks (NN). Secondly, a review of the optimal economic dispatch (OED) of RES using particle swarm optimization (PSO) is presented. The reviewed techniques will be of great significance for system operators that require to gauge and pre-plan flexibility competence for their power systems to ensure practical and economical operation under high penetration of RESs

    Wind generation forecasting methods and proliferation of artificial neural network:A review of five years research trend

    Get PDF
    To sustain a clean environment by reducing fossil fuels-based energies and increasing the integration of renewable-based energy sources, i.e., wind and solar power, have become the national policy for many countries. The increasing demand for renewable energy sources, such as wind, has created interest in the economic and technical issues related to the integration into the power grids. Having an intermittent nature and wind generation forecasting is a crucial aspect of ensuring the optimum grid control and design in power plants. Accurate forecasting provides essential information to empower grid operators and system designers in generating an optimal wind power plant, and to balance the power supply and demand. In this paper, we present an extensive review of wind forecasting methods and the artificial neural network (ANN) prolific in this regard. The instrument used to measure wind assimilation is analyzed and discussed, accurately, in studies that were published from May 1st, 2014 to May 1st, 2018. The results of the review demonstrate the increased application of ANN into wind power generation forecasting. Considering the component limitation of other systems, the trend of deploying the ANN and its hybrid systems are more attractive than other individual methods. The review further revealed that high forecasting accuracy could be achieved through proper handling and calibration of the wind-forecasting instrument and method

    Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: a mini review

    Get PDF
    Abstract:Site suitability problems in renewable energy studies have taken a new turn since the advent of geographical information system (GIS). GIS has been used for site suitability analysis for renewable energy due to its prowess in processing and analyzing attributes with geospatial components. Multi-criteria decision making (MCDM) tools are further used for criteria ranking in the order of influence on the study. Upon location of most appropriate sites, the need for intelligent resource forecast to aid in strategic and operational planning becomes necessary if viability of the investment will be enhanced and resource variability will be better understood. One of such intelligent models is the adaptive neuro-fuzzy inference system (ANFIS) and its variants. This study presents a mini-review of GIS-based MCDM facility location problems in wind and solar resource site suitability analysis and resource forecast using ANFIS-based models. We further present a framework for the integration of the two concepts in wind and solar energy studies. Various MCDM techniques for decision making with their strengths and weaknesses were presented. Country specific studies which apply GIS-based method in site suitability were presented with criteria considered. Similarly, country-specific studies in ANFIS-based resource forecasts for wind and solar energy were also presented. From our findings, there has been no technically valid range of values for spatial criteria and the analytical hierarchical process (AHP) has been commonly used for criteria ranking leaving other techniques less explored. Also, hybrid ANFIS models are more effective compared to standalone ANFIS models in resource forecast, and ANFIS optimized with population-based models has been mostly used. Finally, we present a roadmap for integrating GIS-MCDM site suitability studies with ANFIS-based modeling for improved strategic and operational planning
    corecore