8,482 research outputs found

    Long-Term Load Forecasting Considering Volatility Using Multiplicative Error Model

    Full text link
    Long-term load forecasting plays a vital role for utilities and planners in terms of grid development and expansion planning. An overestimate of long-term electricity load will result in substantial wasted investment in the construction of excess power facilities, while an underestimate of future load will result in insufficient generation and unmet demand. This paper presents first-of-its-kind approach to use multiplicative error model (MEM) in forecasting load for long-term horizon. MEM originates from the structure of autoregressive conditional heteroscedasticity (ARCH) model where conditional variance is dynamically parameterized and it multiplicatively interacts with an innovation term of time-series. Historical load data, accessed from a U.S. regional transmission operator, and recession data for years 1993-2016 is used in this study. The superiority of considering volatility is proven by out-of-sample forecast results as well as directional accuracy during the great economic recession of 2008. To incorporate future volatility, backtesting of MEM model is performed. Two performance indicators used to assess the proposed model are mean absolute percentage error (for both in-sample model fit and out-of-sample forecasts) and directional accuracy.Comment: 19 pages, 11 figures, 3 table

    Industrial Electricity Demand for Turkey: A Structural Time Series Analysis

    Get PDF
    This research investigates the relationship between Turkish industrial electricity consumption, industrial value added and electricity prices in order to forecast future Turkish industrial electricity demand. To achieve this, an industrial electricity demand function for Turkey is estimated by applying the structural time series technique to annual data over the period 1960 to 2008. In addition to identifying the size and significance of the price and industrial value added (output) elasticities, this technique also uncovers the electricity Underlying Energy Demand Trend (UEDT) for the Turkish industrial sector and is, as far as is known, the first attempt to do this. The results suggest that output and real electricity prices and a UEDT all have an important role to play in driving Turkish industrial electricity demand. Consequently, they should all be incorporated when modelling Turkish industrial electricity demand and the estimated UEDT should arguably be considered in future energy policy decisions concerning the Turkish electricity industry. The output and price elasticities are estimated to be 0.15 and -0.16 respectively, with an increasing (but at a decreasing rate) UEDT and based on the estimated equation, and different forecast assumptions, it is predicted that Turkish industrial electricity demand will be somewhere between 97 and 148 TWh by 2020.Turkish Industrial Electricity Demand; Energy Demand Modelling and Forecasting; Structural Time Series Model (STSM); Future Scenarios.

    USING IMPROVED GREY FORECASTING MODEL TO ESTIMATE THE ELECTRICITY CONSUMPTION DEMAND IN VIETNAM

    Get PDF
    Abstract: On the basis of the grey prediction models, this study uses the previous data (from 1980 to 2014) from the website of the World Bank and applies two algorithm models to forecast the electricity consumption in Vietnam. The simulation results show that Fourier Residual Modified GM (1, 1) (abbreviated as FRMGM (1, 1)) is an effective model with an average accuracy of prediction at 99.13%. Therefore, the FRMGM (1, 1) model is strongly suggested for forecasting the electricity consumption demand in Vietnam.Keywords: electricity consumption demand, GM (1, 1); FRMGM (1, 1), Vietna

    A novel ensemble method for electric vehicle power consumption forecasting: Application to the Spanish system

    Get PDF
    The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, since they must adapt their generation to a new scenario, in which electric vehicles will dramatically modify the curve of generation. In this paper, a novel approach based on ensemble learning is proposed. In particular, ARIMA, GARCH and PSF algorithms' performances are used to forecast the electric vehicle power consumption in Spain. It is worth noting that the studied time series of consumption is non-stationary and adds difficulties to the forecasting process. Thus, an ensemble is proposed by dynamically weighting all algorithms over time. The proposal presented has been implemented for a real case, in particular, at the Spanish Control Centre for the Electric Vehicle. The performance of the approach is assessed by means of WAPE, showing robust and promising results for this research field.Ministerio de EconomĂ­a y Competitividad Proyectos ENE2016-77650-R, PCIN-2015-04 y TIN2017-88209-C2-R
    • 

    corecore