9,543 research outputs found

    Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs

    Full text link
    Bedrossian characterized all pairs of forbidden subgraphs for a 2-connected graph to be Hamiltonian. Instead of forbidding some induced subgraphs, we relax the conditions for graphs to be Hamiltonian by restricting Ore- and Fan-type degree conditions on these induced subgraphs. Let GG be a graph on nn vertices and HH be an induced subgraph of GG. HH is called \emph{o}-heavy if there are two nonadjacent vertices in HH with degree sum at least nn, and is called ff-heavy if for every two vertices u,vV(H)u,v\in V(H), dH(u,v)=2d_{H}(u,v)=2 implies that max{d(u),d(v)}n/2\max\{d(u),d(v)\}\geq n/2. We say that GG is HH-\emph{o}-heavy (HH-\emph{f}-heavy) if every induced subgraph of GG isomorphic to HH is \emph{o}-heavy (\emph{f}-heavy). In this paper we characterize all connected graphs RR and SS other than P3P_3 such that every 2-connected RR-\emph{f}-heavy and SS-\emph{f}-heavy (RR-\emph{o}-heavy and SS-\emph{f}-heavy, RR-\emph{f}-heavy and SS-free) graph is Hamiltonian. Our results extend several previous theorems on forbidden subgraph conditions and heavy subgraph conditions for Hamiltonicity of 2-connected graphs.Comment: 21 pages, 2 figure

    Quantum query complexity of minor-closed graph properties

    Get PDF
    We study the quantum query complexity of minor-closed graph properties, which include such problems as determining whether an nn-vertex graph is planar, is a forest, or does not contain a path of a given length. We show that most minor-closed properties---those that cannot be characterized by a finite set of forbidden subgraphs---have quantum query complexity \Theta(n^{3/2}). To establish this, we prove an adversary lower bound using a detailed analysis of the structure of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs. On the other hand, we show that minor-closed properties (and more generally, sparse graph properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly faster, in o(n^{3/2}) queries. Our algorithms are a novel application of the quantum walk search framework and give improved upper bounds for several subgraph-finding problems.Comment: v1: 25 pages, 2 figures. v2: 26 page
    corecore