9,543 research outputs found
Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs
Bedrossian characterized all pairs of forbidden subgraphs for a 2-connected
graph to be Hamiltonian. Instead of forbidding some induced subgraphs, we relax
the conditions for graphs to be Hamiltonian by restricting Ore- and Fan-type
degree conditions on these induced subgraphs. Let be a graph on
vertices and be an induced subgraph of . is called \emph{o}-heavy if
there are two nonadjacent vertices in with degree sum at least , and is
called -heavy if for every two vertices ,
implies that . We say that is -\emph{o}-heavy
(-\emph{f}-heavy) if every induced subgraph of isomorphic to is
\emph{o}-heavy (\emph{f}-heavy). In this paper we characterize all connected
graphs and other than such that every 2-connected
-\emph{f}-heavy and -\emph{f}-heavy (-\emph{o}-heavy and
-\emph{f}-heavy, -\emph{f}-heavy and -free) graph is Hamiltonian. Our
results extend several previous theorems on forbidden subgraph conditions and
heavy subgraph conditions for Hamiltonicity of 2-connected graphs.Comment: 21 pages, 2 figure
Quantum query complexity of minor-closed graph properties
We study the quantum query complexity of minor-closed graph properties, which
include such problems as determining whether an -vertex graph is planar, is
a forest, or does not contain a path of a given length. We show that most
minor-closed properties---those that cannot be characterized by a finite set of
forbidden subgraphs---have quantum query complexity \Theta(n^{3/2}). To
establish this, we prove an adversary lower bound using a detailed analysis of
the structure of minor-closed properties with respect to forbidden topological
minors and forbidden subgraphs. On the other hand, we show that minor-closed
properties (and more generally, sparse graph properties) that can be
characterized by finitely many forbidden subgraphs can be solved strictly
faster, in o(n^{3/2}) queries. Our algorithms are a novel application of the
quantum walk search framework and give improved upper bounds for several
subgraph-finding problems.Comment: v1: 25 pages, 2 figures. v2: 26 page
- …
