2 research outputs found

    Trailgazers: A Scoping Study of Footfall Sensors to Aid Tourist Trail Management in Ireland and Other Atlantic Areas of Europe

    Get PDF
    This paper examines the current state of the art of commercially available outdoor footfall sensor technologies and defines individually tailored solutions for the walking trails involved in an ongoing research project. Effective implementation of footfall sensors can facilitate quantitative analysis of user patterns, inform maintenance schedules and assist in achieving management objectives, such as identifying future user trends like cyclo-tourism. This paper is informed by primary research conducted for the EU funded project TrailGazersBid (hereafter referred to as TrailGazers), led by Donegal County Council, and has Sligo County Council and Causeway Coast and Glens Council (NI) among the 10 project partners. The project involves three trails in Ireland and five other trails from Europe for comparison. It incorporates the footfall capture and management experiences of trail management within the EU Atlantic area and desk-based research on current footfall technologies and data capture strategies. We have examined 6 individual types of sensor and discuss the advantages and disadvantages of each. We provide key learnings and insights that can help to inform trail managers on sensor options, along with a decision-making tool based on the key factors of the power source and mounting method. The research findings can also be applied to other outdoor footfall monitoring scenarios

    Comparison of WLAN Probe and Light Sensor-Based Estimators of Bus Occupancy Using Live Deployment Data

    Get PDF
    Bus company operators are interested in obtaining knowledge about the number of passengers on their buses—preferably doing so at low deployment costs and in an automated manner, while keeping accuracy high. One solution, widely used in practice, involves deploying a light sensor-based system, counting the people entering and leaving the bus. The light sensor system is simple, but errors accumulate over time, because it is not capable of error correcting. For this reason, the light sensor-based system is compared to a WLAN probe-based system, which has entirely different characteristics. Inaccuracy with the WLAN estimator comes from a need to filter out mobile devices outside the bus and to map the number of detected devices to a number of people. The comparison is performed based on data collected from a real-life deployment in a medium sized German city. The comparison shows the trade-off in selecting either of the two methods. Furthermore, a novel approach for fusion of the light sensor and WLAN estimators is proposed which has a big potential in improving accuracy of both estimators. A fusion approach is proposed that utilizes the different error characteristics for error compensation by calculating compensation terms. The knowledge of Ground Truth is not required as part of this fusion approach for calibration; results show that the approach can find the optimal parameter settings and that it makes this occupancy estimation approach scalable and automated
    corecore