10,257 research outputs found

    Actions Speak Louder Than Goals: Valuing Player Actions in Soccer

    Full text link
    Assessing the impact of the individual actions performed by soccer players during games is a crucial aspect of the player recruitment process. Unfortunately, most traditional metrics fall short in addressing this task as they either focus on rare actions like shots and goals alone or fail to account for the context in which the actions occurred. This paper introduces (1) a new language for describing individual player actions on the pitch and (2) a framework for valuing any type of player action based on its impact on the game outcome while accounting for the context in which the action happened. By aggregating soccer players' action values, their total offensive and defensive contributions to their team can be quantified. We show how our approach considers relevant contextual information that traditional player evaluation metrics ignore and present a number of use cases related to scouting and playing style characterization in the 2016/2017 and 2017/2018 seasons in Europe's top competitions.Comment: Significant update of the paper. The same core idea, but with a clearer methodology, applied on a different data set, and more extensive experiments. 9 pages + 2 pages appendix. To be published at SIGKDD 201

    Scoring dynamics across professional team sports: tempo, balance and predictability

    Get PDF
    Despite growing interest in quantifying and modeling the scoring dynamics within professional sports games, relative little is known about what patterns or principles, if any, cut across different sports. Using a comprehensive data set of scoring events in nearly a dozen consecutive seasons of college and professional (American) football, professional hockey, and professional basketball, we identify several common patterns in scoring dynamics. Across these sports, scoring tempo---when scoring events occur---closely follows a common Poisson process, with a sport-specific rate. Similarly, scoring balance---how often a team wins an event---follows a common Bernoulli process, with a parameter that effectively varies with the size of the lead. Combining these processes within a generative model of gameplay, we find they both reproduce the observed dynamics in all four sports and accurately predict game outcomes. These results demonstrate common dynamical patterns underlying within-game scoring dynamics across professional team sports, and suggest specific mechanisms for driving them. We close with a brief discussion of the implications of our results for several popular hypotheses about sports dynamics.Comment: 18 pages, 8 figures, 4 tables, 2 appendice

    Deep Decision Trees for Discriminative Dictionary Learning with Adversarial Multi-Agent Trajectories

    Full text link
    With the explosion in the availability of spatio-temporal tracking data in modern sports, there is an enormous opportunity to better analyse, learn and predict important events in adversarial group environments. In this paper, we propose a deep decision tree architecture for discriminative dictionary learning from adversarial multi-agent trajectories. We first build up a hierarchy for the tree structure by adding each layer and performing feature weight based clustering in the forward pass. We then fine tune the player role weights using back propagation. The hierarchical architecture ensures the interpretability and the integrity of the group representation. The resulting architecture is a decision tree, with leaf-nodes capturing a dictionary of multi-agent group interactions. Due to the ample volume of data available, we focus on soccer tracking data, although our approach can be used in any adversarial multi-agent domain. We present applications of proposed method for simulating soccer games as well as evaluating and quantifying team strategies.Comment: To appear in 4th International Workshop on Computer Vision in Sports (CVsports) at CVPR 201

    Deceptive body movements reverse spatial cueing in soccer

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.The purpose of the experiments was to analyse the spatial cueing effects of the movements of soccer players executing normal and deceptive (step-over) turns with the ball. Stimuli comprised normal resolution or point-light video clips of soccer players dribbling a football towards the observer then turning right or left with the ball. Clips were curtailed before or on the turn (-160, -80, 0 or +80 ms) to examine the time course of direction prediction and spatial cueing effects. Participants were divided into higher-skilled (HS) and lower-skilled (LS) groups according to soccer experience. In experiment 1, accuracy on full video clips was higher than on point-light but results followed the same overall pattern. Both HS and LS groups correctly identified direction on normal moves at all occlusion levels. For deceptive moves, LS participants were significantly worse than chance and HS participants were somewhat more accurate but nevertheless substantially impaired. In experiment 2, point-light clips were used to cue a lateral target. HS and LS groups showed faster reaction times to targets that were congruent with the direction of normal turns, and to targets incongruent with the direction of deceptive turns. The reversed cueing by deceptive moves coincided with earlier kinematic events than cueing by normal moves. It is concluded that the body kinematics of soccer players generate spatial cueing effects when viewed from an opponent's perspective. This could create a reaction time advantage when anticipating the direction of a normal move. A deceptive move is designed to turn this cueing advantage into a disadvantage. Acting on the basis of advance information, the presence of deceptive moves primes responses in the wrong direction, which may be only partly mitigated by delaying a response until veridical cues emerge

    Graph Encoding and Neural Network Approaches for Volleyball Analytics: From Game Outcome to Individual Play Predictions

    Full text link
    This research aims to improve the accuracy of complex volleyball predictions and provide more meaningful insights to coaches and players. We introduce a specialized graph encoding technique to add additional contact-by-contact volleyball context to an already available volleyball dataset without any additional data gathering. We demonstrate the potential benefits of using graph neural networks (GNNs) on this enriched dataset for three different volleyball prediction tasks: rally outcome prediction, set location prediction, and hit type prediction. We compare the performance of our graph-based models to baseline models and analyze the results to better understand the underlying relationships in a volleyball rally. Our results show that the use of GNNs with our graph encoding yields a much more advanced analysis of the data, which noticeably improves prediction results overall. We also show that these baseline tasks can be significantly improved with simple adjustments, such as removing blocked hits. Lastly, we demonstrate the importance of choosing a model architecture that will better extract the important information for a certain task. Overall, our study showcases the potential strengths and weaknesses of using graph encodings in sports data analytics and hopefully will inspire future improvements in machine learning strategies across sports and applications by using graphbased encodings.Comment: This paper is an extended version of the one accepted at the KDD 2023 Workshop on Data Science and AI for Sports (DSAI4Sports), entitled 'RallyGraph: Specialized Graph Encoding for Enhanced Volleyball
    • …
    corecore