12 research outputs found

    Multi-Beam Scan Analysis with a Clinical LINAC for High Resolution Cherenkov-Excited Molecular Luminescence Imaging in Tissue.

    Get PDF
    Cherenkov-excited luminescence scanned imaging (CELSI) is achieved with external beam radiotherapy to map out molecular luminescence intensity or lifetime in tissue. Just as in fluorescence microscopy, the choice of excitation geometry can affect the imaging time, spatial resolution and contrast recovered. In this study, the use of spatially patterned illumination was systematically studied comparing scan shapes, starting with line scan and block patterns and increasing from single beams to multiple parallel beams and then to clinically used treatment plans for radiation therapy. The image recovery was improved by a spatial-temporal modulation-demodulation method, which used the ability to capture simultaneous images of the excitation Cherenkov beam shape to deconvolve the CELSI images. Experimental studies used the multi-leaf collimator on a clinical linear accelerator (LINAC) to create the scanning patterns, and image resolution and contrast recovery were tested at different depths of tissue phantom material. As hypothesized, the smallest illumination squares achieved optimal resolution, but at the cost of lower signal and slower imaging time. Having larger excitation blocks provided superior signal but at the cost of increased radiation dose and lower resolution. Increasing the scan beams to multiple block patterns improved the performance in terms of image fidelity, lower radiation dose and faster acquisition. The spatial resolution was mostly dependent upon pixel area with an optimized side length near 38mm and a beam scan pitch of P = 0.33, and the achievable imaging depth was increased from 14mm to 18mm with sufficient resolving power for 1mm sized test objects. As a proof-of-concept, in-vivo tumor mouse imaging was performed to show 3D rendering and quantification of tissue pO2 with values of 5.6mmHg in a tumor and 77mmHg in normal tissue

    Fusing Images With Different Focuses Using Support Vector Machines

    Full text link

    Focused image recovery from two defocused images recorded with different camera settings

    No full text

    High-Speed Probe Card Analysis Using Real-time Machine Vision and Image Restoration Technique

    Get PDF
    There has been an increase in demand for the wafer-level test techniques that evaluates the functionality and performance of the wafer chips before packaging them, since the trend of integrated circuits are getting more sophisticated and smaller in size. Throughout the wafer-level test, the semiconductor manufacturers are able to avoid the unnecessary packing cost and to provide early feedback on the overall status of the chip fabrication process. A probe card is a module of wafer-level tester, and can detect the defects of the chip by evaluating the electric characteristics of the integrated circuits(IC's). A probe card analyzer is popularly utilized to detect such a potential probe card failure which leads to increase in the unnecessary manufacture expense in the packing process. In this paper, a new probe card analysis strategy has been proposed. The main idea in conducting probe card analysis is to operate the vision-based inspection on-the- y while the camera is continuously moving. In doing so, the position measurement from the encoder is rstly synchronized with the image data that is captured by a controlled trigger signal under the real-time setting. Because capturing images from a moving camera creates blurring in the image, a simple deblurring technique has been employed to restore the original still images from blurred ones. The main ideas are demonstrated using an experimental test bed and a commercial probe card. The experimental test bed has been designed that comprises a micro machine vision system and a real-time controller, the con guration of the low cost experimental test bed is proposed. Compared to the existing stop-and-go approach, the proposed technique can substantially enhance the inspection speed without additional cost for major hardware change.1 yea

    ์•ก์ •์„ ์ด์šฉํ•œ ์†Œํ˜• ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ๊ฐ€ ํƒ‘์žฌ๋œ DFD ๊ธฐ๋ฐ˜์˜ ๊ฑฐ๋ฆฌ ์ธก์ • ์„ผ์„œ ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ์ „๊ตญ์ง„.์ž์œจ ์ฃผํ–‰ ๊ด€๋ จ ๊ธฐ์ˆ ๋“ค์ด ๊ธ‰๊ฒฉํžˆ ๋ฐœ์ „ํ•ด ๊ฐ€๊ณ  ์žˆ๋Š” ๊ฐ€์šด๋ฐ ์ž์œจ์ฃผํ–‰์˜ ๊ธฐ๋ฐ˜ ๊ธฐ์ˆ  ์ค‘ ํ•˜๋‚˜์ธ ์„ผ์„œ ๊ธฐ์ˆ ์€ ํ˜„์žฌ ๋ผ์ด๋‹ค, ๋ ˆ์ด๋”, ์Šคํ…Œ๋ ˆ์˜ค ๋น„์ „, ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜์˜ ๋ชจ๋…ธ ๋น„์ „ ์นด๋ฉ”๋ผ ๋“ฑ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋‚˜ ์ด๋Ÿฌํ•œ ์„ผ์„œ๋“ค์€ ๋ถ€ํ”ผ๊ฐ€ ํฌ๊ฑฐ๋‚˜ ๊ฐ€๊ฒฉ์ด ๋†’์•„ ์•„์ง ๋Œ€์ค‘์ ์œผ๋กœ ๋งŽ์€ ์ฐจ๋Ÿ‰์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ค์šด ์‹ค์ •์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ธ”๋ž™๋ฐ•์Šค ์นด๋ฉ”๋ผ์˜ ํฌ๊ธฐ์™€ ๋™์ผํ•œ ์†Œํ˜• ์นด๋ฉ”๋ผ์˜ ์•ž๋‹จ์— ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ๋ฅผ ๊ฐ„๋‹จํžˆ ์‚ฝ์ž…ํ•˜์—ฌ ๋ถ€ํ”ผ๋ฅผ ์ค„์ด๊ณ  ๊ฐ€๊ฒฉ์„ ํ˜„์ €ํžˆ ๋‚ฎ์ถ”์–ด ์˜์ƒ๊ณผ ๊ฑฐ๋ฆฌ ์ •๋ณด๋ฅผ ๋™์‹œ์— ์ œ๊ณตํ•˜๋Š” ๊ฑฐ๋ฆฌ ์„ผ์„œ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด ๊ฑฐ๋ฆฌ ์„ผ์„œ๋Š” f/1.8๊ณผ f/4.0์˜ ๊ฐ’์„ ๊ฐ€์ง€๋Š” ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ์™€ ์ดˆ์  ๊ฑฐ๋ฆฌ 8 mm, ํ™”๊ฐ 45ยฐ, FHD๊ธ‰ ํ™”์งˆ์„ ๊ฐ€์ง€๋Š” ์นด๋ฉ”๋ผ ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ๊ฐ€ ์ž…๋ ฅ ์ „์••์„ ๋ฐ›๊ฒŒ ๋˜๋ฉด ์ „์••์— ๋”ฐ๋ผ ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ์˜ ํฌ๊ธฐ๊ฐ€ ๋ณ€ํ™”ํ•˜๊ณ , ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ๊ฐ€ ํƒ‘์žฌ๋œ ์นด๋ฉ”๋ผ ๋ชจ๋“ˆ์—์„œ๋Š” ์กฐ๋ฆฌ๊ฐœ์˜ ํฌ๊ธฐ์— ๋”ฐ๋ผ ๊ฐ™์€ ์žฅ๋ฉด์— ๋Œ€ํ•ด ํ”ผ์‚ฌ๊ณ„ ์‹ฌ๋„๊ฐ€ ๋‹ค๋ฅธ ๋‘ ์ด๋ฏธ์ง€๋ฅผ ์–ป๊ฒŒ ๋˜๋ฉฐ, ์ด ํ”ผ์‚ฌ๊ณ„ ์‹ฌ๋„์˜ ์ฐจ์ด๋ฅผ ํ†ตํ•ด ๊ฑฐ๋ฆฌ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ด๋•Œ ์„œ๋กœ ๋‹ค๋ฅธ ํฌ๊ธฐ์˜ ์กฐ๋ฆฌ๊ฐœ๋กœ ์–ป์€ ๋‘ ์ด๋ฏธ์ง€ ๊ฐ„์˜ ํ”ผ์‚ฌ๊ณ„ ์‹ฌ๋„ ์ฐจ์ด๋Š” ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ผ ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋ฉฐ ์‹ค์ œ ์ธก์ •์„ ํ†ตํ•˜์—ฌ ์ด๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜๋ฉด ์˜ค์ฐจ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋Š”๋ฐ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋””ํ…ํ„ฐ ๊ธฐ๋ฐ˜๊ณผ ๊ฑฐ๋ฆฌ๋งต ๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋””ํ…ํ„ฐ ๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ, ์ฃผ๊ฐ„์— ์ฐจ๋Ÿ‰์ด ์ •์ง€๋œ ์ƒํ™ฉ์—์„œ๋Š” 50 m ๊ฑฐ๋ฆฌ ๋ฒ”์œ„์—์„œ ํ‰๊ท  0.826 m์˜ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•˜์˜€๋‹ค. ๊ฑฐ๋ฆฌ๋งต ๊ธฐ๋ฐ˜์˜ ๊ฒฝ์šฐ, ์ฃผ๊ฐ„์— ์ดฌ์˜๋œ 70 m ๊ฑฐ๋ฆฌ ๋ฒ”์œ„์˜ ์˜์ƒ์—์„œ ๋ฌผ์ฒด ์˜์—ญ์˜ ์˜ค์ฐจ๋Š” ์ฐจ๋Ÿ‰์˜ ์ •์ง€ ์ƒํ™ฉ์—์„œ๋Š” 0.619 m, ์ฃผํ–‰ ์ƒํ™ฉ์—์„œ๋Š” 1.000 m๋ฅผ ๊ฐ€์ง„๋‹ค. ์•ผ๊ฐ„์— ์ฃผํ–‰ ์ค‘ ์ดฌ์˜ํ•œ ์˜์ƒ์€ 40 m ๋ฒ”์œ„์—์„œ ๋ฌผ์ฒด ์˜์—ญ์— ๋Œ€ํ•ด 5.470 m์˜ ์˜ค์ฐจ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ์˜ ๊ตฌ๋™์€ ์•ก์ • ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ 2.64 V์˜ ๋‚ฎ์€ ๋™์ž‘ ์ „์••๊ณผ 10.59 ms์˜ ๋น ๋ฅธ ์‘๋‹ต ์‹œ๊ฐ„์„ ๊ตฌํ˜„ํ•˜์—ฌ ์ „์ฒด ๊ฑฐ๋ฆฌ ์„ผ์„œ ์‹œ์Šคํ…œ์ด ๋‚ฎ์€ ์ „๋ ฅ์—์„œ 30 fps๋กœ ์‹ค์‹œ๊ฐ„ ๊ฑฐ๋ฆฌ ์ธก์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœํ•œ ๊ฑฐ๋ฆฌ ์„ผ์„œ๋Š” ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์นด๋ฉ”๋ผ ํ•œ ๋Œ€ ๋งŒ์œผ๋กœ ํ•œ ์žฅ์˜ ์ด๋ฏธ์ง€๊ฐ€ ์•„๋‹Œ ํ”ผ์‚ฌ๊ณ„ ์‹ฌ๋„๊ฐ€ ๋‹ค๋ฅธ ๋‘ ์žฅ์˜ ์ด๋ฏธ์ง€๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฑฐ๋ฆฌ ์ •ํ™•๋„๋ฅผ ๋†’์˜€๋‹ค. ๋˜ํ•œ 1/2.7 ์ธ์น˜์˜ ์ด๋ฏธ์ง€ ์„ผ์„œ๋ฅผ ๊ฐ€์ง€๋Š” ์นด๋ฉ”๋ผ ์•ž๋‹จ์—, ๋ฐ˜๋„์ฒด ๊ณต์ • ๋ฐ ๋””์Šคํ”Œ๋ ˆ์ด ๊ณต์ • ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜์—ฌ ๊ตฌํ˜„๋œ 10 ร— 10 ร— 1.8 mm3 ํฌ๊ธฐ์˜ ์†Œํ˜• ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ๋ฅผ ์‚ฝ์ž…ํ•จ์œผ๋กœ์จ ์ „์ฒด ์„ผ์„œ ํฌ๊ธฐ๋ฅผ ์†Œํ˜•ํ™” ์‹œ์ผฐ์œผ๋ฉฐ ๊ณต์ • ์ •ํ™•๋„๋ฅผ ๋†’์˜€๋‹ค. ๊ฐ€๊ฒฉ์ ์ธ ์ธก๋ฉด์—์„œ๋„ ๊ธฐ์กด ๊ฑฐ๋ฆฌ ์„ผ์„œ๋“ค๊ณผ ๋น„๊ตํ•ด ๋งค์šฐ ๋‚ฎ์•„์กŒ์œผ๋ฉฐ FHD๊ธ‰ ์นด๋ฉ”๋ผ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์˜์ƒ์˜ ํ™”์งˆ์„ ๋†’์˜€๋‹ค. ๊ฐœ๋ฐœํ•œ ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ๊ฐ€ ํ•œ ๋ ˆ์ด์–ด์—์„œ ๋™์ž‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ •๋ ฌ์˜ ์˜ค์ฐจ์—์„œ ์˜ค๋Š” ๊ด‘ํ•™ ์ˆ˜์ฐจ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๊ณ  ๊ธฐ๊ณ„์ ์œผ๋กœ ์›€์ง์ด๋Š” ๋ถ€๋ถ„์ด ์—†์–ด ์‹ ๋ขฐ์„ฑ์ด ์ข‹์œผ๋ฉฐ ๋ถ€ํ˜ธํ™”๋œ ์กฐ๋ฆฌ๊ฐœ, ์ปฌ๋Ÿฌ ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•œ ์กฐ๋ฆฌ๊ฐœ, ๊ฐ€์‹œ๊ด‘, ์ ์™ธ์„  ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•œ ์ด์ค‘ ์กฐ๋ฆฌ๊ฐœ ๋“ฑ ์กฐ๋ฆฌ๊ฐœ๋ฅผ ์ด์šฉํ•œ ๋‹ค๋ฅธ DFD ๋ฐฉ์‹๋ณด๋‹ค ๊ฑฐ๋ฆฌ ์ธก์ • ๊ฐ€๋Šฅ ๋ฒ”์œ„๊ฐ€ ์ปค์„œ ์ž๋™์ฐจ ์šฉ์œผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด๋ฏธ์ง€์˜ ํ›„์ฒ˜๋ฆฌ ์—†์ด ์„ ๋ช…ํ•œ ์˜์ƒ์„ ๋ฐ”๋กœ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๊ฑฐ๋ฆฌ ์„ผ์„œ๋Š” ์ž์œจ์ฃผํ–‰์ฐจ์— ์ ์šฉ๋˜์–ด ์ถฉ๋Œ ๋ฐฉ์ง€ ๊ฒฝ๊ณ , ์‚ฌ๊ฐ ์ง€๋Œ€ ๊ฒ€์ถœ, ๋ณดํ–‰์ž ๊ฒ€์ถœ ๋ฐ ๊ฑฐ๋ฆฌ ์ธ์‹, ์ฃผ์ฐจ ๋ณด์กฐ ๋“ฑ์˜ ๊ธฐ๋Šฅ์„ ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๊ทธ ์™ธ ๋กœ๋ด‡, ๋“œ๋ก , ๋ชจ๋ฐ”์ผ์šฉ ์นด๋ฉ”๋ผ, ๊ฒŒ์ž„ ์‚ฐ์—…, ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท ๋“ฑ๊ณผ ๊ฐ™์ด ์†Œํ˜• ์นด๋ฉ”๋ผ๊ฐ€ ์‚ฝ์ž…๋˜์–ด ๊ฑฐ๋ฆฌ ์ธก์ •์„ ํ•„์š”๋กœ ํ•œ ์—ฌ๋Ÿฌ ์‘์šฉ ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.Recently, autonomous car is rapidly developing with the distance sensing technology. There is LIDAR, radar, stereo vision, and algorithm-based monovision cameras, but these sensors are bulk or expensive. Thats why these sensors are not yet popularly used in many vehicles for autonomous car. To overcome these major problems, this study provides the image and distance information at the same time by implementing the distance sensor by simply inserting a tunable aperture in front of the same size camera as dash cam. The distance sensor of this study consists of the tunable aperture with f/1.8 and f/4.0 and the camera module with focal length of 8 mm, field of view of 45ยฐ, and FHD resolution. When a driving voltage is applied to the tunable aperture, the tunable aperture changes according to the voltage. The camera module assembled with the tunable aperture can obtain two images with two different depth of field. Depth of field difference between two images increases linearly with distance, and this is confirmed through simulation and experiment. The distance information can be extracted through the difference in the depth of field of images. Additionally, the deep learning algorithm such as detector algorithm and depth map algorithm can increase the accuracy of the distance. When the detector algorithm was applied, the average error is 0.826 m in the 50 m range when the vehicle was stopped during the day. In the case of depth map algorithm, the error of the object area in the 70 m range during the day is 0.619 m in the stationary situation and 1.000 m in the driving situation. The image taken at night has an error of 5.470 m for the object area in the 40 m range. The distance sensor system can measure the distances in real time of 30 fps at low power by tunable aperture based on LCD method for low operating voltage of 2.64 V and fast response time of 10.59 ms, The distance sensor improves the distance accuracy by using two apertures instead of just one aperture in a single camera. This sensor has the same size as a dashboard camera with a 1/2.7 inch image sensor by using small variable aperture of 10 ร— 10 ร— 1.8 mm3 by semiconductor fabrication and display fabrication, which is realized to reduce the overall distance sensor size and improve fabrication accuracy. Also, the price is much lower than existing distance sensors, and the FHD camera is used to improve image quality. Since the tunable aperture operates in one layer, it can reduce optical aberration resulting from misalignment. The sensor could be highly reliable due to no moving mechanical parts. Unlike the distance sensors using other apertures such as coded aperture, aperture using color filter, and dual aperture using visible and infrared filter, clear image is obtained without recovery process. The distance sensor is applied to autonomous vehicles for collision avoidance warning, blind spot detection, pedestrian detection, and parking assistance. It is also suitable to the other applications such as robots, drones, mobile cameras, gaming industry and the Internet of Things.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 ์ œ 2 ์ ˆ ์„ ํ–‰ ์—ฐ๊ตฌ 4 1.2.1 ๊ฑฐ๋ฆฌ ์ธก์ • ๋ฐฉ์‹์˜ ์ข…๋ฅ˜ 4 1.2.2 ๋‹ค์–‘ํ•œ ๋ฐฉ์‹์˜ ์†Œํ˜• ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ 12 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  19 ์ œ 2 ์žฅ ์•ก์ • ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹์˜ ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ 23 ์ œ 1 ์ ˆ ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ์˜ ๋™์ž‘ ์›๋ฆฌ 23 ์ œ 2 ์ ˆ ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ ์„ค๊ณ„ 27 ์ œ 3 ์ ˆ ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ ์ œ์ž‘ 29 ์ œ 4 ์ ˆ ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ ์ œ์ž‘ 33 ์ œ 3 ์žฅ ๊ฑฐ๋ฆฌ ์ธก์ • ์‹œ์Šคํ…œ 40 ์ œ 1 ์ ˆ ๊ฑฐ๋ฆฌ ์ธก์ •์˜ ์›๋ฆฌ 40 ์ œ 2 ์ ˆ ๊ด‘ํ•™ ์‹œ์Šคํ…œ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ ์ • 42 ์ œ 3 ์ ˆ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•œ ๋ธ”๋Ÿฌ ์˜ˆ์ธก 48 ์ œ 4 ์ ˆ ๊ด‘ํ•™๊ณ„ ๊ฐœ๋ฐœ 52 ์ œ 5 ์ ˆ ๊ฐ€๋ณ€์กฐ๋ฆฌ๊ฐœ์™€ ๋ Œ์ฆˆ์˜ ๋‹จ์ผ ๊ธฐํŒ ์ง‘์ ํ™” 57 3.5.1 ์›จ์ดํผ ๋ ˆ๋ฒจ์˜ ๋ Œ์ฆˆ ์—ฐ๊ตฌ ๋™ํ–ฅ 57 3.5.2 ์›จ์ดํผ ๋ ˆ๋ฒจ์˜ ์˜ค๋ชฉ๋ Œ์ฆˆ ์„ค๊ณ„ ๋ฐ ์‹คํ—˜ 62 3.5.3 ์ง‘์ ํ™” ๊ณต์ • ๋ฐ ๊ฒฐ๊ณผ 67 ์ œ 6 ์ ˆ ์–ด์…ˆ๋ธ”๋ฆฌ 77 ์ œ 4 ์žฅ ๊ฑฐ๋ฆฌ ์ธก์ • ์‹คํ—˜ 84 ์ œ 1 ์ ˆ ์‹คํ—˜ ํ™˜๊ฒฝ ๊ตฌ์ถ• 84 ์ œ 2 ์ ˆ ์˜์ƒ ํš๋“ 87 ์ œ 3 ์ ˆ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ 91 4.3.1 DFD ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ๊ฒฐ๊ณผ ๋ถ„์„ 91 4.3.2 ๋”ฅ๋Ÿฌ๋‹์„ ์ด์šฉํ•œ ๊ฒฐ๊ณผ ๋ถ„์„ 93 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  106 ์ฐธ๊ณ  ๋ฌธํ—Œ 109 Abstract 125Docto

    Filtering of image sequences: on line edge detection and motion reconstruction

    Get PDF
    L'argomento della Tesi riguarda lรญelaborazione di sequenze di immagini, relative ad una scena in cui uno o piห˜ oggetti (possibilmente deformabili) si muovono e acquisite da un opportuno strumento di misura. A causa del processo di misura, le immagini sono corrotte da un livello di degradazione. Si riporta la formalizzazione matematica dellรญinsieme delle immagini considerate, dellรญinsieme dei moti ammissibili e della degradazione introdotta dallo strumento di misura. Ogni immagine della sequenza acquisita ha una relazione con tutte le altre, stabilita dalla legge del moto della scena. Lรญidea proposta in questa Tesi ร‹ quella di sfruttare questa relazione tra le diverse immagini della sequenza per ricostruire grandezze di interesse che caratterizzano la scena. Nel caso in cui si conosce il moto, lรญinteresse ร‹ quello di ricostruire i contorni dellรญimmagine iniziale (che poi possono essere propagati attraverso la stessa legge del moto, in modo da ricostruire i contorni della generica immagine appartenente alla sequenza in esame), stimando lรญampiezza e del salto del livello di grigio e la relativa localizzazione. Nel caso duale si suppone invece di conoscere la disposizione dei contorni nellรญimmagine iniziale e di avere un modello stocastico che descriva il moto; lรญobiettivo ร‹ quindi stimare i parametri che caratterizzano tale modello. Infine, si presentano i risultati dellรญapplicazione delle due metodologie succitate a dati reali ottenuti in ambito biomedicale da uno strumento denominato pupillometro. Tali risultati sono di elevato interesse nellรญottica di utilizzare il suddetto strumento a fini diagnostici
    corecore