3 research outputs found

    Microfluidic Reduction of Osmotic Stress in Oocyte and Zygote Vitrification.

    Full text link
    Microfluidic cryoprotectant exchange enables vitrification of murine zygotes with superior morphology as indicated by a smoother cell surface and higher developmental competence compared to conventional methods. Bovine oocyte vitrification also benefit as evidenced by higher lipid retention. Experimental observations and mathematical analysis demonstrate that the microfluidic advantage arise predominantly from eliminating high shrinkage rates associated with abrupt and uneven exposure to vitrification solutions that readily occur in current manual protocols. The microfluidic cryoprotectant exchange method described has immediate applications for improving animal and human oocyte, zygote, and embryo cryopreservation. On a fundamental level, the clear demonstration that at the same minimum cell volume, cell shrinkage rate affects sub-lethal damage should be broadly useful for cryobiology.PhDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107056/1/davlai_1.pd

    Development of Preparative Microfluidic Techniques for Lysis of Microbial Cells and Affinity Purification of Proteins

    Get PDF
    In order to fully realise the benefits of microscale mammalian cell culture and microbial fermentation systems, a device capable of online sample preparation to enable further investigation of product quality is a key requirement. The aim of this work is to move toward such a device by designing and characterising a microfluidic lysis device and microaffinity chromatography device that are compatible with each other. The resulting microfluidic lysis device is useful for preparatory lysis of microbial cells. It works by mixing a lysis reagent (BugBuster MastermixTM), with microbial culture, using a T-Piece connection. Lysis takes place in a 700”m internal diameter fused silica capillary. The device was able to successfully lyse microbial cells with similar active Glutathione S Transferase release to sonication. The operating flowrate range of the device was 3.207”L min-1 to 6.414 ”L min-1 and the device volume was 30”L - 60”L. The microaffinity chromatography column performed well in studies with pure Glutathione S Transferase. It showed good loading and elution behaviour. The breakthrough and elution curves, and quantity of protein eluted per unit bed volume, were similar to lab scale. The difference being as a result of experimental error. The column also performed well with a 100% clarified Escherichia coli lysate containing recombinant Glutathione S Transferase from Schistosoma japonicum. The eluate had a purity of 55% and concentration of 2.24 mg/ml. The column was fabricated from inexpensive fused silica capillary. It had an internal diameter of 700”m, a length of 5cm (the same length as a typical lab scale Glutathione Affinity column), and a bed volume of approximately 19”L. The operating flowrate range for the column was the same as the microlysis device

    Das MYCN-Onkogen als Marker fĂŒr minimale Resterkrankung und therapeutisches Ziel beim Neuroblastom

    Get PDF
    Neuroblastoma, the most common extracranial solid childhood cancer, arises from precursors of the developing sympathetic nervous system. MYCN oncogene amplification is a determinant of high risk and occurs in ~25% of neuroblastomas. Despite intensive treatment, more than half these patients succumb to their disease, implying persistence of therapy-resistant MYCN-amplified minimal residual neuroblastoma cells. This thesis proposes a comprehensive concept for the specific diagnostic detection of the MYCN amplicon and evaluates new treatment options for MYCN-amplified neuroblastoma. Disease-relevant nucleotide changes, structural gene rearrangements and copy number alterations were detected in tumor material by next-generation sequencing of a customized hybrid capture-based targeted panel. Unique MYCN amplicon breakpoints in the rearranged gene constitute a target sequence for a personalized minimal residual disease (MRD) PCR diagnostic. MYCN amplicon breakpoints in neuroblastoma cell lines and tumors were identified and recovered by individual, semi-quantitative PCR assays and Sanger sequencing. The assay was further developed for highly sensitive, real-time quantitative and droplet digital PCR detection for selected MYCN breakpoints in cell lines. MRD level detected in bone marrow aspirates collected during therapy outlined different disease courses in patients, including MRD persistence until relapse and good response to the first treatment course. Combining multi-agent chemotherapy in current high-risk protocols with indirect MYCN inhibitors provides a potential route to improve poor cure rates for MYCN-amplified neuroblastomas. Different hyperactive biological networks in MYCN-amplified neuroblastoma were tackled using small molecule inhibitors of the bromodomain and extra-terminal (BET) domain-containing protein BRD4, phosphoinositide 3-kinase (PI3K) and polo-like kinase 1 (PLK1). BET (JQ1, OTX015 and TEN-010) and kinase (alpelisib, volasertib and rigosertib) inhibitors demonstrated anti-cancer activity by diminishing viability in cell line-based drug screens at nanomolar to low micromolar concentrations. Rigosertib treatment altered PLK1 and PI3K signaling and strongly impaired the cellular ability for wound healing and colony formation. In line with in vitro observations, rigosertib reduced tumor growth in patient-derived neuroblastoma xenografts in mice. Combining OTX015 and volasertib produced synergistic anti-tumor responses in two MYCN-amplified neuroblastoma cell lines. To prevent MYCN-driven proliferation of tumor cells, further indirect MYCN targets are also being considered. This is exemplified by a substrate of PLK1, ASPM, which is elevated in MYCN-amplified primary neuroblastomas. Knockdown of ASPM, a microtubule-associated protein involved in mitotic spindle assembly, in MYCN-amplified neuroblastoma cell lines reduced viability and proliferation, accompanying a neuronal differentiation phenotype with neurite-like outgrowth, cytoskeletal changes and increased expression of differentiation markers. This study presents clinical implementable molecular diagnostics to pinpoint unique MYCN-amplified neuroblastoma cells within non-invasively accessible biopsy material, and proposes indirect small molecule-based MYCN therapies and potentially new drug targets for a personalized treatment.Das Neuroblastom, der hĂ€ufigste extrakranielle solide Krebs im Kindesalter, entsteht aus VorlĂ€uferzellen des sich entwickelnden sympathischen Nervensystems. Eine Amplifikation des MYCN-Onkogens ist ein bestimmender Faktor fĂŒr ein hohes Risiko und tritt bei ~25% der Neuroblastome auf. Trotz intensiver Behandlung erliegt mehr als die HĂ€lfte dieser Patienten ihrer Krankheit, was die Persistenz therapieresistenter, MYCN-amplifizierter minimaler Restneuroblastomzellen impliziert. Diese Arbeit stellt ein umfassendes Konzept fĂŒr den spezifischen, diagnostischen Nachweis des MYCN-Amplikons vor und evaluiert neue Behandlungsoptionen fĂŒr MYCN-amplifizierte Neuroblastome. Krankheitsrelevante NukleotidverĂ€nderungen, strukturelle Genrearrangements und Kopienzahl-verĂ€nderungen wurden im Tumormaterial mit Hilfe eines maßgeschneiderten, zielgerichteten hybrid-capture-basierten Next Generation Sequencing (NGS) Assays nachgewiesen. Einzigartige MYCN-Amplikon-Bruchpunkte im rearrangierten Gen stellen eine Zielsequenz fĂŒr eine personalisierte PCR-Diagnostik der minimalen Resterkrankung (MRD) dar. MYCN-Amplikon-Bruchpunkte in Neuroblastom-Zelllinien und Tumoren wurden durch individuelle, semi-quantitative PCR-Assays und Sanger Sequenzierung identifiziert und wiedererkannt. Der Assay wurde fĂŒr den hochsensitiven, quantitativen Echtzeit- und digitalen Tröpfchen-PCR-Nachweis fĂŒr ausgewĂ€hlte MYCN-Bruchpunkte in Zelllinien weiterentwickelt. Die MRD Level, die in den wĂ€hrend der Therapie gesammelten Knochenmarkaspiraten nachgewiesen wurden, skizzierten die verschiedenen KrankheitsverlĂ€ufe bei den Patienten, einschließlich der MRD-Persistenz bis zum Rezidiv und des guten Ansprechens auf den ersten Behandlungsabschnitt. Die Kombination der Multi-Wirkstoff-Chemotherapie in den aktuellen Hochrisikoprotokollen mit indirekten MYCN-Inhibitoren stellt einen möglichen Weg dar, die schlechten Heilungsraten fĂŒr MYCN-amplifizierte Neuroblastome zu verbessern. Verschiedene, hyperaktive biologische Netzwerke in MYCN-amplifizierten Neuroblastomen wurden mit niedermolekularen Inhibitoren der BromdomĂ€ne und des extra-terminalen (BET) domĂ€nenhaltigen Proteins BRD4, der Phosphoinositid-3-Kinase (PI3K) und der polo-Ă€hnlichen Kinase 1 (PLK1) behandelt. BET (JQ1, OTX015 und TEN-010) und Kinase-Inhibitoren (Alpelisib, Volasertib und Rigosertib) zeigten eine krebshemmende Wirkung, indem sie die ViabilitĂ€t in zelllinienbasierten Wirkstoff-Screens bei nanomolaren bis niedrigen mikromolaren Konzentrationen verminderten. Die Behandlung mit Rigosertib verĂ€nderte die PLK1- und PI3K-SignalĂŒbertragung und beeintrĂ€chtigte die zellulĂ€re FĂ€higkeit zur Wundheilung und Koloniebildung stark. In Übereinstimmung mit In-vitro-Beobachtungen reduzierte Rigosertib das Tumorwachstum in von Patienten stammenden Neuroblastom-Xenografts bei MĂ€usen. Die Kombination von OTX015 und Rigosertib erzeugte synergistische antitumorale AktivitĂ€t in zwei MYCN-amplifizierten Neuroblastom-Zelllinien. Um die MYCN-gesteuerte Proliferation von Tumorzellen zu verhindern, werden weitere indirekte MYCN-Targets in Betracht gezogen. Ein Beispiel hierfĂŒr ist ein Substrat von PLK1, ASPM, das in MYCN-amplifizierten, primĂ€ren Neuroblastomen erhöht ist. Das Herunterregulieren von ASPM, einem Mikrotubuli-assoziierten Protein, das an der mitotischen Spindelanordnung beteiligt ist, fĂŒhrte in MYCN-amplifizierten Neuroblastom-Zelllinien zu einer verminderten ViabilitĂ€t und Proliferation, was mit einem neuronalen DifferenzierungsphĂ€notyp mit neuritenartigem Auswuchs, zytoskelettalen VerĂ€nderungen und erhöhter Expression von Differenzierungsmarkern einherging. Diese Studie stellt eine klinisch umsetzbare, molekulare Diagnostik vor, um einzigartige MYCN-amplifizierte Neuroblastomzellen in nicht-invasiv zugĂ€nglichem Biopsiematerial zu detektieren, und schlĂ€gt indirekte, niedermolekular-basierende MYCN-Therapien und potenziell neue ZielmolekĂŒle fĂŒr eine personalisierte Krebsbehandlung vor
    corecore