645,578 research outputs found
Simulation studies of fluid critical behaviour
We review and discuss recent advances in the simulation of bulk critical
phenomena in model fluids. In particular we emphasise the extensions to
finite-size scaling theory needed to cope with the lack of symmetry between
coexisting fluid phases. The consequences of this asymmetry for simulation
measurements of quantities such as the particle density and the heat capacity
are pointed out and the relationship to experiment is discussed. A general
simulation strategy based on the finite-size scaling theory is described and
its utility illustrated via Monte-Carlo studies of the Lennard-Jones fluid and
a two-dimensional spin fluid model. Recent applications to critical polymer
blends and solutions are also briefly reviewed. Finally we consider the outlook
for future simulation work in the field.Comment: 35 pages Revtex, 11 eps figures. Review article to appear in J.
Phys.: Condens. Matte
Direct numerical simulation of dispersed particles in a compressible fluid
We present a direct numerical simulation method for investigating the
dynamics of dispersed particles in a compressible solvent fluid. The validity
of the simulation is examined by calculating the velocity relaxation of an
impulsively forced spherical particle with a known analytical solution. The
simulation also gives information about the fluid motion, which provides some
insight into the particle motion. Fluctuations are also introduced by random
stress, and the validity of this case is examined by comparing the calculation
results with the fluctuation-dissipation theorem.Comment: 7 pages, 5 figure
Dynamic simulation of an electrorheological fluid
A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10^−4 to [infinity]. The effective viscosity of the suspension increases as Ma^−1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma^−1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected "snapshots" of the suspension microstructure. In particular, at small Ma, the suspension dynamics exhibit two distinct motions: a slow elastic-body-like deformation where electrostatic energy is stored, followed by a rapid microstructural rearrangement where energy is viscously dissipated. It is suggested that the observed dynamic yield stress is associated with these dynamics
- …
