685,680 research outputs found

    Electromagnetic flow rate meter

    Get PDF
    A liquid metal, whose flow rate is to be determined, is directed through a chamber made of electrically-insulating material on which there is impressed a magnetic field perpendicular to the direction of flow of the liquid metal. The magnetic field is made to increase in strength in a downstream direction of the flow of liquid metal. At least a pair of electrodes are disposed in the chamber traversely and perpendicular to the direction of flow and an ammeter is connected between the electrodes. Electrodes may be disposed in the top or the bottom of the chamber and each may be segmented. Oppositely disposed electrodes may be used with at least one dividing wall extending from each electrode to cause reversal of the direction of flow of the liquid metal. The magnetic field may be provided by electromagnets or permanent magnets such as shaded pole permanent magnets

    Increasing granular flow rate with obstructions

    Full text link
    We describe a simple experiment involving spheres rolling down an inclined plane towards a bottleneck and through a gap. Results of the experiment indicate that flow rate can be increased by placing an obstruction at optimal positions near the bottleneck. We use the experiment to develop a computer simulation using the PhysX physics engine. Simulations confirm the experimental results and we state several considerations necessary to obtain a model that agrees well with experiment. We demonstrate that the model exhibits clogging, intermittent and continuous flow, and that it can be used as a tool for further investigations in granular flow.Comment: 7 pages, 6 figure

    Variable Powder Flow Rate Control in Laser Metal Deposition Processes

    Get PDF
    This paper proposes a novel technique, called Variable Powder Flow Rate Control (VPFRC), for the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to adjust the powder flow rate to maintain a uniform powder deposition per unit length even when disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the powder delivery system motor and the powder transport system (i.e., five–meter pipe, powder dispenser, and cladding head) are first constructed. A general tracking controller is then designed to track variable powder flow rate references. Since the powder flow rate at the nozzle exit cannot be directly measured, it is estimated using the powder transport system model. The input to this model is the DC motor rotation speed, which is estimated on–line using a Kalman filter. Experiments are conducted to examine the performance of the proposed control methodology. The experimental results demonstrate that VPFRC is successful in maintaining a uniform track morphology, even when the motion control system accelerates and decelerates.Mechanical Engineerin

    High pressure flow-rate switch

    Get PDF
    Flow-rate switch adjusts easily over a wide switching range and operates uniformly over many cycles. It adapts easily to control of various fluids and has the possibility of introducing multi-point switching. Novel design features include the tapered spool, balanced porting, capillary-bypass lubrication, and capillary-restriction damping

    Two-dimensional flows of foam: drag exerted on circular obstacles and dissipation

    Full text link
    A Stokes experiment for foams is proposed. It consists in a two-dimensional flow of a foam, confined between a water subphase and a top plate, around a fixed circular obstacle. We present systematic measurements of the drag exerted by the flowing foam on the obstacle, \emph{versus} various separately controlled parameters: flow rate, bubble volume, solution viscosity, obstacle size and boundary conditions. We separate the drag into two contributions, an elastic one (yield drag) at vanishing flow rate, and a fluid one (viscous coefficient) increasing with flow rate. We quantify the influence of each control parameter on the drag. The results exhibit in particular a power-law dependence of the drag as a function of the solution viscosity and the flow rate with two different exponents. Moreover, we show that the drag decreases with bubble size, increases with obstacle size, and that the effect of boundary conditions is small. Measurements of the streamwise pressure gradient, associated to the dissipation along the flow of foam, are also presented: they show no dependence on the presence of an obstacle, and pressure gradient depends on flow rate, bubble volume and solution viscosity with three independent power laws.Comment: 23 pages, 13 figures, proceeding of Eufoam 2004 conferenc

    Remote semi-continuous flow rate logging seepage meter

    Get PDF
    The movement of groundwater and its associated solutes from upland regions was implicated in the degradation of receiving surface water bodies. Current efforts to directly measure this influx of water incorporate manually operated seepage meters which are hindered by severe limitations. A prototype seepage meter was developed by NASA Langley Research Center and Virginia Polytechnic Institute and State University that will allow for the semi-continuous collection and data logging of seepage flux across the sediment water interface. The meter is designed to operate at depths to 40 meters, and alleviate or minimize all disadvantages associated with traditional methods while remaining cost effective. The unit was designed to operate independently for time periods on the order of weeks with adjustable sample sequences depending upon hydrologic conditions. When used in conjunction with commercially available pressure transducers, this seepage meter allows for correlations to be made between groundwater discharge and tidal/sea state conditions in coastal areas. Field data from the Chesapeake Bay and Florida Bay systems are presented

    Filter Cleaning Using Gas Injection

    Get PDF
    A filter cleaning process using gas injection is considered. An estimate for the minimum mass flow rate out of the gas injector and the corresponding injector/filter geometry is found. The estimates are based on a similarity solution for a free turbulent jet. The minimum mass flow rate and geometry is worked out for a specific example

    Prototype Boiling Ketupat Type of Batch Study of Heat Transfer Coefficient Into Condensor

    Get PDF
    So far for producing ketupat done using boiling system open by using a regular steamer so much heat loss occurs due to his high consumption of fuel, to reduce the fuel consumption of the writers tried to make a prototype of a batch type boiling ketupat equipped with condenser.Purpose to condensation steam in boiling water so that it does not require the addition of water.Energy consumption in a way traditional ketupat boiling takes time for 4 hours for all processes with the same time as that of 285000 kJ/kg while using a prototype wave energy consumption i.e. batch type of 37341 kJ/kg for cooling fluid flow rate 5 lt/min, 37802 kJ/kg for cooling fluid flow rate 10 lt/min and 46100 Lt/min for the coolant flow rate 15 lt/min. Influence of flow rate of cooling fluid on the heat transfer coefficient is proportional, the greater the flow rate of cooling fluid then the greater the coefficient of heat transfer rates. This is due to the heat lost when still on the way to the condenser and heat lost due to contact between the condenser with outside air

    Self-averaging property of queuing systems

    Full text link
    We establish the averaging property for a queuing process with one server, M(t)/GI/1. It is a new relation between the output flow rate and the input flow rate, crucial in the study of the Poisson Hypothesis. Its implications include the statement that the output flow always possesses more regularity than the input flow.Comment: 18 pages, one typo remove
    corecore