2,755 research outputs found
In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System
Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals
remains highly challenging. Therefore, novel in vitro models with improved
external validity are needed to investigate hepatic metabolism and timely
identify any toxicity of drugs in humans. In this study, we examined the
effects of diclofenac, as a model substance with a known risk of
hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using
primary human liver cells. Biotransformation pathways of the drug and possible
effects on metabolic activities, morphology and cell transcriptome were
evaluated. Formation rates of diclofenac metabolites were relatively stable
over the application period of seven days in bioreactors exposed to 300 µM
diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to
1000 µM diclofenac (1000 µM BR) metabolite concentrations declined
drastically. The biochemical data showed a significant decrease in lactate
production and for the higher dose a significant increase in ammonia
secretion, indicating a dose-dependent effect of diclofenac application. The
microarray analyses performed revealed a stable hepatic phenotype of the cells
over time and the observed transcriptional changes were in line with
functional readouts of the system. In conclusion, the data highlight the
suitability of the bioreactor technology for studying the hepatotoxicity of
drugs in vitro
Liver ‘organ on a chip’
© 2017 The liver plays critical roles in both homeostasis and pathology. It is the major site of drug metabolism in the body and, as such, a common target for drug-induced toxicity and is susceptible to a wide range of diseases. In contrast to other solid organs, the liver possesses the unique ability to regenerate. The physiological importance and plasticity of this organ make it a crucial system of study to better understand human physiology, disease, and response to exogenous compounds. These aspects have impelled many to develop liver tissue systems for study in isolation outside the body. Herein, we discuss these biologically engineered organoids and microphysiological systems. Keywords: Microphysiologic systems; Organoids; 3D culture systemsNational Institutes of Health (U.S.) (Grant UH3TR000496)National Institutes of Health (U.S.) (Grant UH3TR000503
In vitro models for liver toxicity testing
Over the years, various liver-derived in vitro model systems have been developed to enable investigation of the potential adverse effects of chemicals and drugs. Liver tissue slices, isolated microsomes, perfused liver, immortalized cell lines, and primary hepatocytes have been used extensively. Immortalized cell lines and primary isolated liver cells are currently the most widely used in vitro models for liver toxicity testing. Limited throughput, loss of viability, and decreases in liver-specific functionality and gene expression are common shortcomings of these models. Recent developments in the field of in vitro hepatotoxicity include three-dimensional tissue constructs and bioartificial livers, co-cultures of various cell types with hepatocytes, and differentiation of stem cells into hepatic lineage-like cells. In an attempt to provide a more physiological environment for cultured liver cells, some of the novel cell culture systems incorporate fluid flow, micro-circulation, and other forms of organotypic microenvironments. Co-cultures aim to preserve liver-specific morphology and functionality beyond those provided by cultures of pure parenchymal cells. Stem cells, both embryonic- and adult tissue-derived, may provide a limitless supply of hepatocytes from multiple individuals to improve reproducibility and enable testing of the individual-specific toxicity. This review describes various traditional and novel in vitro liver models and provides a perspective on the challenges and opportunities afforded by each individual test system.National Institutes of Health (U.S.) (P42 ES005948)National Institutes of Health (U.S.) (R01 ES01524
Bioreactor technologies to support liver function in vitro
Liver is a central nexus integrating metabolic and immunologic homeostasis in the human body, and the direct or indirect target of most molecular therapeutics. A wide spectrum of therapeutic and technological needs drives efforts to capture liver physiology and pathophysiology in vitro, ranging from prediction of metabolism and toxicity of small molecule drugs, to understanding off-target effects of proteins, nucleic acid therapies, and targeted therapeutics, to serving as disease models for drug development. Here we provide perspective on the evolving landscape of bioreactor-based models to meet old and new challenges in drug discovery and development, emphasizing design challenges in maintaining long-term liver-specific function and how emerging technologies in biomaterials and microdevices are providing new experimental models.National Institutes of Health (U.S.) (R01 EB010246)National Institutes of Health (U.S.) (P50-GM068762-08)National Institutes of Health (U.S.) (R01-ES015241)National Institutes of Health (U.S.) (P30-ES002109)5UH2TR000496-02National Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systems (CBET-0939511)United States. Defense Advanced Research Projects Agency. Microphysiological Systems Program (W911NF-12-2-0039
State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology.
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing
SEURAT-1 Tools & Methods Catalogue
The SEURAT-1 methods are here collected together and reported in the format of the database service that ensures OECD compliant descriptions. The information provided for for each methods is provided as reported and publicly available in the EURL ECVAM DataBase service on Alternative Methods, DB-ALM (http://ecvam-dbalm.jrc.ec.europa.eu/), developed and maintained by the Commission's Joint
Research Centre.
The aim of the FP7 SEURAT-1 Research Initiative is the development of a long-term research strategy leading to pathway-based human safety assessments in the field of repeated dose systemic toxicity testing of chemicals. The overall goal is to develop complementary theoretical, computational and experimental (in vitro) models that predict quantitative points of departure needed for human safety
assessment and replace currently used animal testing.JRC.F.3-Chemicals Safety and Alternative Method
DESIGN AND DEVELOPMENT OF A MICROFLUIDIC DEVICE FOR THE ASSESSMENT OF FIRST-PASS METABOLISM
The aim of the thesis is to develop a microfluidic platform in order to mimic the first pass metabolism of oral ingested compounds. In the first part of the thesis, there is an introduction about the in vivo mechanism involved in the in process of first pass metabolism. First pass metabolism is strictly correlated to oral bioavailability of new developed drugs. The prediction of the dose of drug that reaches the blood flow and the target is fundamental. The organ involved in the first pass metabolism are principally the intestine, where a first metabolic process takes place, and the liver where the quote of drugs is metabolized again. New bioengineered in vitro model to assess first pass metabolism are explained, with a particular attention on 3D intestine and liver model. Furthermore, the first chapter is focused on the recent studies on organ-on-chip device that can recapitulate the in vivo physiology and microenvironment, with the relative steps of fabrications. To achieve the reproduction of the first pass metabolism on chip, we first focussed on the production of an innovative hepatic three dimensional tissues and then on the development of a organotypic intestinal tissues. In the chapter 2 it is presented the comparison of two kind of hepatic 3D model: spheroids and microtissues. The 3D-hepatic model chosen, was cultured into the new developed liver-on-chip device in order to have a perfusion culture.
The chapter 3 is focused on the fabrication of an organotypic intestinal 3D tissues cultured in both in static and dynamic conditions. In particular a gut-on-chip microfluidic device was fabricated in order to obtain an air-liquid interface culture. The combination of the two hepatic and intestine model on chip, is addressed in chapter 4. In this last chapter a microfluidic biochip, can accommodate both hepatic microtissues and 3D human intestinal equivalent. By the selective communication of the two tissues recreated into the biochip, it is possible to simulate in vitro the mechanism of orally ingested drugs
Approaches to in vitro tissue regeneration with application for human disease modeling and drug development
Reliable in vitro human disease models that capture the complexity of in vivo tissue behaviors are crucial to gain mechanistic insights into human disease and enable the development of treatments that are effective across broad patient populations. The integration of stem cell technologies, tissue engineering, emerging biomaterials strategies and microfabrication processes, as well as computational and systems biology approaches, is enabling new tools to generate reliable in vitro systems to study the molecular basis of human disease and facilitate drug development. In this review, we discuss these recently developed tools and emphasize opportunities and challenges involved in combining these technologies toward regenerative science.National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant 5R01EB010246-02)National Center for Advancing Translational Sciences (U.S.) (Grant 1UH2TR000496)United States. Defense Advanced Research Projects Agency (Cooperative Agreement W911NF-12-2-0039
Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused 3D human liver bioreactor
Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a 3D human microphysiological hepatocyte-Kupffer-cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and assessed by the release of pro-inflammatory cytokines, IL6 and TNFα. A sensitive and specific RP-UHPLC-QTOF-MS method was used to evaluate hydrocortisone disappearance and metabolism at near physiological levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for two days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8-10 % of the loss, and 45-52 % was phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life (t1/2), rate of elimination (kel), clearance (CL), and area under the curve (AUC), were 23.03 h, 0.03 h-1, 6.6x10-5 L. h-1 and 1.03 mg/L*h respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically-relevant tool for investigating hepatic function in an inflamed liver. Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a 3D human microphysiological hepatocyte-Kupffer-cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and assessed by the release of pro-inflammatory cytokines, IL6 and TNFα. A sensitive and specific RP-UHPLC-QTOF-MS method was used to evaluate hydrocortisone disappearance and metabolism at near physiological levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for two days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8-10 % of the loss, and 45-52 % was phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life (t[subscript 1/2]), rate of elimination (k[subscript el]), clearance (CL), and area under the curve (AUC), were 23.03 h, 0.03 h[superscript -1], 6.6x10[superscript -5] L. h-1 and 1.03 mg/L*h respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically-relevant tool for investigating hepatic function in an inflamed liver.United States. Defense Advanced Research Projects Agency (DARPA-BAA-11-73 Microphysiological Systems W911NF-12-2-0039)National Institutes of Health (U.S.) (5-UH2-TR000496)Massachusetts Institute of Technology. Center for Environmental Health Sciences (P30-ES002109
Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease
Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI
- …
