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Abstract

Reliable in vitro human disease models that capture the complexity of in vivo tissue behaviors are

crucial to gain mechanistic insights into human disease and enable the development of treatments

that are effective across broad patient populations. The integration of stem cell technologies, tissue

engineering, emerging biomaterials strategies and microfabrication processes, as well as

computational and systems biology approaches, is enabling new tools to generate reliable in vitro

systems to study the molecular basis of human disease and facilitate drug development. In this

review, we discuss these recently developed tools and emphasize opportunities and challenges

involved in combining these technologies toward regenerative science.
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Introduction

It is estimated that on average more than US$1 billion are expended over a span of roughly

12.5 years to deliver a new drug to market [1]. In total 85% of therapies fail in early clinical

trials, whereas of those that continue to Phase III (generally the last step before regulatory

approval) only 50% are approved [2]. The current drug development process is inefficient

and unsustainable, thus requiring state-of-the-art innovations and tools to survive. This
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situation is exacerbated in the case of large numbers of diseases with small and

geographically dispersed patient populations, for which it is even more difficult to collect

sufficient data for translational research [1,3]. A central challenge in drug development is

the divergence between results obtained from animal studies and from human trials. Animal

studies often fail to predict actual clinical outcomes, because the doses, formulations and

schedules of medication in the clinic differ from those given to the animals and because of

differences between species [2]. Thus, there is an immediate need to develop human

surrogate models that bridge the gap between conventional rodent studies and human trials,

not only to achieve a greater understanding of disease mechanisms and drug discovery

efforts but also to evaluate new therapeutic compounds.

Injury to cells and tissues sets in motion a series of events that contain the damage and

initiate the healing process by means of regeneration and repair [4]. Inadequate tissue repair

following trauma or surgery and misregulated tissue regeneration and repair responses, such

as diabetes mellitus, aging, cancer, osteoarthritis and fibrosis, affect millions of patients

worldwide each year [5,6]. The molecular mechanisms underlying tissue repair or its failure

are not completely understood and current therapeutic options are limited. Thus, tissue

regeneration technology has emerged as a useful platform for development of reliable in

vitro systems, with applications in drug development and disease modeling [7]. However, a

major limitation of simplified in vitro model systems is that they often fail to recapitulate the

appropriate microenvironmental context in terms of biological cues (including chemical and

physical effectors) [8]. Current progress in cell biology and stem cell science, in

convergence with advances in microfabrication technologies and biomaterials, has created a

unique opportunity to generate relevant humanized micro-tissue constructs. These new

capabilities can serve as a crucial toolset for probing human physiology and disease states.

As such, these systems provide platforms capable of directing, manipulating and analyzing

cellular behavior in the context of an in-vivo-like microenvironment. Here, we review

several major advances in cell biology and fabrication technology that are being utilized in

these applications. First we will describe how cells can be genetically engineered to produce

various types of cells with distinct behavior. This aspect is the first building block in

engineering tissue constructs. Hierarchical structural features of tissues can be achieved at

multiple levels by using tools to engineer the cellular microenvironment in either a static or

dynamic fashion (Figure 1a). Thus, in the next section we explain how biomaterial

properties can alter environmental cues, cellular fate and function, and how advances in

micro- and nano-fabrication techniques have enabled the formation of microengineered

structures, which mimic natural tissues with a high degree of spatial resolution. To achieve

complex tissue features and capture inter- and intra-organ communications, dynamic

environments incorporating fluid flow will be needed. Therefore, we will review bioreactor

and microfluidic technologies capable of providing these dynamic elements (Figure 1a). In

conclusion, we summarize various ways to glean insights from the wealth of data that is

extracted from these systems using computational and systems biology approaches.
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Engineering cellular phenotype and function

Cell sources

Identifying the ideal source of human cells is the first major step in the development of

human surrogate in vitro models. Various sources have been explored toward this end,

including cell lines, primary cryopreserved cells and freshly isolated cells, as well as

differentiated cells derived from stem cells. Although freshly isolated cells remain the gold

standard in many situations, there are certain key constraints such as limited availability of

donors and the variability associated with genetic and epigenetic background of donor

subjects. Cryopreserved human cells are commercially accessible, and can be controlled for

lot-to-lot variations. Consequently, studies performed across numerous laboratories can be

carried out with cells from the same lot number so as to maintain identical genetic and

epigenetic backgrounds. However, for many cell types, access to fresh or cryopreserved

human cells is constrained. This situation includes, but is not limited to, various types of

brain cells such as astrocytes, oligodendrocytes, cells of the conductive system in the heart,

liver sinusoidal endothelial cells, pancreatic cells and retinal cells. By contrast, to

recapitulate human disease, we need to be able to capture at least the minimum required

complexity of an organ by including multiple cell types and crucial insoluble or soluble

microenvironmental cues. Yet, it is extremely difficult to predict or define the minimum

requirements of complexity needed in vitro to capture in vivo behavior accurately.

Presumably these requirements vary depending on the applications pursued; however, they

remain a challenge especially during testing new drugs or in the case of diseases with a

limited knowledge of molecular mechanisms.

Induced pluripotent stem cells

Isolation of human embryonic stem cells by Thompson et al. heralded a new age in which a

cell population could be used to differentiate a population to various cell types [9]. This

presented a powerful new opportunity for a source of cells for tissue engineering, drug

development or therapeutic transplantation. Following that pioneering advance, in 2006

Yamanaka and Takahashi introduced the ‘somatic reprogramming’ technique in which the

epigenetic state of somatic cells can be reprogrammed into a pluripotent state [10]. This

success was followed by the development of various differentiation protocols to generate

specific cell populations, and this technique was immediately heralded as a novel tool for

use in modeling human diseases. Differentiation of human induced pluripotent stem cells

(iPSCs) into several cell types has been achieved including neural progenitors [11], motor

neurons [12], retinal cells [13], hematopoietic progenitor cells and blood cells [14,15],

endothelial cells [15] and hepatocytes [16], reviewed in [17]. Notably, differentiated iPSCs

could rescue the disease phenotype when transplanted into donor mice [14]. Although these

advances are very promising, several compelling technical challenges remain [18]. For

example, the differentiation process of stem cells is stochastic, which results in significant

variability in the efficiency of differentiation. As a consequence, a heterogeneous population

of cells is produced at different developmental stages. For instance, induced hepatocytes

currently closely resemble fetal hepatocytes; therefore, understanding the required

environmental cues, signaling modalities and timescales necessary for true maturation of a

cell lineage remains the topic of future efforts. Additionally, transcription factor or surface
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marker expression is currently the standard approach to assess the developmental stage of

differentiation [17]. However, defined protocols are needed to evaluate the function of these

differentiated cells at each step [17]. In parallel, genetic targeting strategies have recently

been developed [19] that can significantly improve our ability to create cells with genetically

controlled backgrounds in which the disease-causing genetic variation is the sole

experimental variable [20]. This technique now targets multiple genetic loci with acceptable

efficiency [21] providing opportunities to generate endogenous reporters as markers for

differentiation, gene corrections and relevant cellular sources for disease modeling and

validation within the drug development pipeline.

Engineering tissue behavior and function

Biomaterials for substrates and matrices

Cells in the body reside in a microenvironment that encounters multiple cues from neighbor

cells, extracellular matrix (ECM) and fluid stress. These cues can be categorized as

adhesive, mechanical, chemical and topographical cues [22,23]. The ECM is composed of a

complex assembly of many proteins and polysaccharides the particular composition of

which varies from tissue to tissue. The primary components include insoluble fibrous

structural proteins (i.e. elastin, collagens, laminins and fibronectin), proteoglycans and

specialized proteins (i.e. growth factors, small integrin-binding glycoproteins). The ECM

components continuously modulate physical forces that are sensed by cells as well as

soluble cues that are sequestered and released in a temporal and spatial manner. This

microenvironment evolves continuously as a consequence of cell–cell interaction or cell–

matrix crosstalk. Additionally, ECM provides a basic structural scaffold to maintain robust

tissue architecture. Taken together, biomaterials play a central part in emerging strategies

within regenerative medicine and tissue engineering, and provide a scaffold to control and

direct morphogenesis and cell function. These materials are used to mimic various facets of

extracellular environment such as stiffness, release of various growth factors and

presentation of extracellular proteins of interest. Material selection for each specific

application depends on several variables, including physical properties (e.g. mechanics,

degradation, gel formation), mass transport properties (e.g. diffusion) and biological

properties (e.g. cell adhesion and signaling) [24]. Biologically derived (e.g. collagen gels,

matrigel) and synthetic biomaterials (e.g. synthetic hydrogels) have been developed and

used in various studies. Synthetic materials have become more important in recent years

because they promote a more controlled and reproducible physicochemical

microenvironment. When working with these materials, multiple parameters are considered

tunable such as crosslinking density, porosity, presentation mode of adhesion ligands and

their chemistry, as well as the degradation rate of the material [23–25]. Additionally, growth

factors and soluble cues can be bound by synthetically tethering linker molecules to a

substrate to explore various attributes of the ECM environment fully [26].

Many past studies applied these biomaterial systems to cultures of mature cells at a fully

differentiated state to maintain their phenotype after isolation or to direct the organization

and tissue morphogenesis. Recent studies have attempted to address the role of biomaterials

in controlling stem cell fate and function. Classically, genetic and molecular mediators (e.g.
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growth factors, transcription factors) were utilized as a preferred approach for control of

stem cell fate. However, increasing evidence has revealed that a diverse array of additional

environmental factors contribute to the overall regulation of stem cell activity. In fact, tissue

regeneration requires resident stem cells to survey the status of the microenvironment (stem

cell niche) and respond appropriately to alterations from aging, injury or inflammation.

Using a micropatterning approach, it was found that cell shape (i.e. rounded versus flattened

morphologies) controls the lineage commitment of mesenchymal stem cells (MSCs) into an

adipogenic or osteoblastic phenotype [27]. In another study, substrate elasticity was shown

to regulate skeletal muscle stem cell self-renewal in culture. Muscle stem cells cultured on

soft hydrogel substrates that mimic the elasticity of muscle (12 kPa) self-renew in vitro and

contribute extensively to muscle regeneration [28]. Another study fabricated physically

crosslinked RGD-modified alginate hydrogels with a wide range of mechanics (2.5–110

kPa), and reported optimal osteogenic differentiation of encapsulated MSCs for intermediate

stiffness values (11–30 kPa) [29]. In an attempt to mimic dynamically changing matrix

mechanics, hydrogel mechanics were temporally manipulated in situ in two elegant studies

[30,31]. Recently, Lutolf and co-workers described a high-throughput hydrogel microwell

system that can be used to probe features such as cell density, substrate mechanics and

protein incorporation. This system comprised soft hydrogel microwell arrays with modular

stiffness (shear moduli of 1–50 kPa) in which individual microwells were functionalized

with combinations of proteins spotted by robotic technology [32,33]. Using this device,

more than 2000 experiments can be performed on a single glass slide. This system was

demonstrated successfully by probing the combinatorial effects of these parameters on

human mesenchymal and mouse neural stem cell differentiation [33]. Advances in material

fabrication methods, such as the ones discussed here, present a unique opportunity to control

the cellular microenvironment to instruct stem cell functions. Other advances include the

introduction of 3D environments while presenting multiple cues such as growth factors [23],

as well as new experimental and computational approaches to quantify cell behavior in a

robust and systematic fashion.

Micro- and nano-fabrication technologies

Controlling the assembly of cells and environmental cues in three dimensions is crucial for

engineering functional tissues. To address the need for spatial heterogeneity of cues in

microtissue structures, various microfabrication techniques have been used to generate

patterns of cells on surfaces. Various techniques including microcontact printing,

microfluidic patterning using microchannels and laminar flow patterning have been applied

in this respect, reviewed elsewhere in [34,35]. Photolithographic techniques are another

highly developed method used for patterning cells. Soft lithography involves the use of a

patterned elastomeric stamp composed of polydimethylsiloxane (PDMS) to generate desired

micro- or nano-scale patterns. Various micropatterned surfaces have been prepared by using

these techniques to investigate the effect of cell–cell interaction or distinct biological cues

and their influence on the differentiation and function of human stem cells [36]. Recently,

stereolithography techniques were used to enable 3D photopatterning of hydrogels [37,38].

Stereolithography offers advantages such as computer-aided design (CAD) capabilities and

multicell and multimaterial fabrication with the possibility to encapsulate cells at the time of
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fabrication [39,40]. Additionally, through integration of dielectrophoresis with

stereolithography, 3D cellular assembly was controlled in encapsulation of embryonic stem

cells as well as embryoid bodies [41]. To achieve greater spatial resolution, a

stereolithographic technique using digital light processors (DLP) and projectors, termed

projection stereolithography, was also developed [42–44]. Using 3D projection

stereolithography, different cell types including adipose-derived stem cells were

incorporated successfully within the fabricated hydrogel scaffolds; this method has also been

applied to generate complex 3D designer scaffolds [40,42].

Nanolithography techniques (with precision in the range of ten to hundreds of nm) are

another facet of emerging tools to create nanotopographical cues that control cellular fate

and function [45]. For instance, a recent study used dip pen nanolithography to produced

homogenously nanopatterned chemically modified surfaces to initiate a directed cellular

response such as MSC differentiation, in a highly reproducible manner without the need for

exogenous biological factors or heavily supplemented cell media [46]. In another study,

electron-beam lithography was used to create arrays of nanopits with various spacing to

control osteogenic differentiation in the absence of osteogenic supplements [47]. These

efforts open up crucial avenues for recapitulating the in vivo cellular microenvironment and

the wide variation in nanotopographical cues between different tissues and various regions

within a tissue.

Microfluidic and microreactor technologies

It has long been understood that the supply of oxygen and soluble nutrients becomes a

crucial limiting factor in the in vitro culture of 3D tissues. Previous studies have shown that

cellular spheroids larger than 1 mm in diameter generally contain a hypoxic, necrotic center

surrounded by a rim of viable cells [48]. Incorporation of flow in the system can regulate

oxygen gradients while providing essential nutrients to facilitate 3D structure. Additionally,

mechanical forces are known to be important modulators of cell physiology and can increase

the biosynthetic activity of cells in bioartificial matrices, thus potentially improving or

accelerating tissue regeneration in vitro [49]. However our current knowledge regarding the

specifics of mechanical forces or regimes of application (i.e. magnitude, frequency,

continuous or intermittent) with respect to cellular function is limited. Although mechanical

forces can be generated in real time from the fluid in circulation, stretching or compression

modes of materials in contact with cells can also produce important organ-specific

mechanical cues. These aspects are important when providing organ-specific biomechanical

cues (e.g. in alveolar epithelium or cardiac muscles) [50]. In general, bioreactors are

designed to be devices in which biochemical and/or biological events are conducted under

closely monitored and tightly controlled environmental factors (e.g. temperature, pH, waste

removal or nutrient supply). Microfluidics comprise systems involving fluids with

geometries having characteristic length dimensions in the order of tens to hundreds of

microns [51], yet the tissue organoid structures that exist within the same systems can

encompass a range from single cells to large cell populations. Therefore, both systems when

combined with properly selected biomaterials and the requisite microfabrication processes

can provide control over the physicochemical environment in cells spanning all dimensions

of cell–cell, cell–matrix and cell–fluid interactions.

Ebrahimkhani et al. Page 6

Drug Discov Today. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Traditionally, most microfluidic culture systems were designed to culture cells in 2D

monolayers. However 3D ECM and hydrogel fabrication technologies have recently been

merged with microfluidics to achieve 3D cellular microenvironments in flow-competent

platforms [52,53]. In one study, a 3D hydrogel was used directly within culture chambers of

microfluidic systems, enabling spatial control defined by the structure of chambers [52]. A

pneumatic actuation strategy was applied to permit fabrication of gels while keeping the

channels open throughout the casting process. In another effort, microfluidic channels were

incorporated directly in a hydrogel and ECM scaffold to define a vascular architecture [54].

The microfluidic hydrogel fabrication approach enables a more efficient transport of water

and soluble factors, improves control over gradients of soluble factors across 2D and/or 3D

cell culture and enables perfusion of an engineered tissue scaffold [55]. Similarly,

morphogenesis of 3D tissue structures under continuous perfusion was performed to

engineer the hepatic lobule as a functional unit of the liver [56,57]. In this system,

morphogenesis of seeded cells is guided in part by scaffold surface chemistry, which

controls the relative values of cell–cell and cell–substrate adhesion strength, and by the

channel geometry. With the emergence of microengineering technologies, 3D vascularized

materials were developed as a result of advances in microfabrication techniques, reviewed

elsewhere [51,58]. For instance, a recent study used rigid 3D filament networks of

carbohydrate glass, as a cytocompatible sacrificial template in engineered tissues containing

living cells, to generate cylindrical networks that could be lined with endothelial cells and

perfused with blood under high-pressure pulsatile flow [59]. Notably, 3D vascular features

were also achieved by modular approaches that consist of stacks or the assembly of multiple

2D produced structures [60,61].

Isolated complex tissue and multiorgans in communication

Using various fabrication technologies different facets of complex tissue behavior have been

elucidated. Many of these efforts attempted to engineer minimal functional units of each

tissue by implementing features such as tissue-specific interfaces, cellular organization or

biomechanical cues including air or fluid flows. A lung-on-a-chip was accomplished by

microfabricating a microfluidic system containing two closely opposed microchannels

separated by a porous, flexible membrane coated with ECM that contains alveolar epithelial

cells and endothelial cells at opposite sides to represent an air–liquid interface [62]. A

similar experimental system was applied to mimic the complex structure and physiology of

the intestine using human intestinal epithelial (Caco-2) cells [63]. A topographically

patterned porous membrane in a microfluidic device was used as an in vitro model of renal

reabsorptive barriers [64]. In another study, a circular microfluidic compartmentalized co-

culture platform was used to explore the central nervous system (CNS) axon–glia interaction

and signaling [65]. In a recent chip-based system, ex vivo skin and single hair follicular units

were cultured in a bioreactor platform to extend the static maintenance period required for

substance testing [66]. Most of these studies have addressed an isolated organ model on a

single fluidic platform. However, many aspects of human disease or drug toxicity are

dependent on intricate interactions between multiple organs inside the body. Examples of

such crosstalk include hepatic clearance of a drug acting on a distant target site or the effect

of barrier tissues such as the epithelium of the gastrointestinal (GI) tract, the lung

epithelium, the skin and the blood–brain barrier to reduce the bioavailability of drugs that
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are taken up orally, through inhalation or through application to the skin. In fact, past efforts

have explored human-on-a-chip models that can simulate multi-tissue interactions under

fluidic flow using cell lines representing each organ [67]. However, current efforts are

focused on engineering complex behavior of organs on integrated platform technologies.

These integrated fluidic platforms maintain the capability to host multiple organ structures

and provide in-depth insights regarding human pathophysiology.

Understanding complex biological systems through data integration and

computational modeling

In the above sections we have reviewed advances in experimental cell biology and

fabrication technologies that together help offer at least some aspects of biological

complexity at molecular, cellular and tissue levels. Most often, however, the resulting

platforms to date have not been readily amenable to the kinds of high-throughput data-rich

studies that have become more commonplace in simpler experimental methods [68], such as

transcriptomic, proteomic, phosphoproteomic and metabolomic measurement techniques.

Moreover, these existing platforms have rarely gained the greater, integrative insights that

are available by bringing multivariate computational modeling and analyses to bear on these

questions. Thus, in this section, we describe computational frameworks that are proving to

offer significant benefit in advancing experimental molecular, cell and tissue biology toward

a more predictive capability. We highlight the potential of these approaches to assist in the

elucidation of disease pathophysiology, facilitate the design of new therapeutic strategies

and expedite the drug discovery process.

The emergence of systems analyses

Owing to the intrinsic complexity of biological systems, integration of experimental and

computational analyses is required for a more in-depth understanding of cell physiology and

behavior. Systems biology approaches emphasize a multivariate understanding that

encompasses contributions of many components, enabling more-robust insights that cannot

be obtained from reductionist studies focusing on individual entities [69]. It is becoming

increasingly appreciated that the most powerful avenue for systems biology extends beyond

simply the ‘horizontal integration’ dimension of -omics, requiring concomitantly an

‘operational integration’ dimension of kinetics and dynamics along with a multiscale

‘vertical integration’ dimension [70].

With respect to practical research and investigative procedures, systems biology involves an

iterative, strategic interplay between data-driven and hypothesis-driven perspectives. Global

observations are matched against model predictions in an iterative manner, leading to the

formation of improved models, new predictions and elegant experiments to test them [71]. A

systems biology framework can encompass multiple aims to: (i) characterize all molecular

components of the system; (ii) identify molecular interactions within the system, including

the details associated with how those interactions change following perturbations; (iii) assess

the spatiotemporal dynamics of the behavior and interactions of the constituents; and (iv)

integrate this information into a quantitative and potentially predictive mathematical model

[72]. Collectively, this basic infrastructure facilitates a more in-depth understanding of the
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mechanistic formalism associated with observed behaviors, the manner in which the system

responds to internal and external perturbations and which, of several competing hypothesis

or models, is most consistent with experimental observations thus most likely to represent

cell physiology accurately.

Computational models consist of two distinct classifications: knowledge discovery (i.e. data-

mining), which extracts hidden patterns from huge quantities of experimental data to form

resultant hypotheses; and simulation-based analysis, which tests hypotheses via in silico

experiments that, in turn, provide predictions to be examined by in vitro and in vivo studies

[69]. These methods are not mutually exclusive; data mining efforts increasingly inform

simulation-based analyses. Knowledge discovery is used extensively within bioinformatics,

such as the inference of gene regulatory networks from expression profiles [73–75]. To

understand, predict and ultimately control the behavior of biological systems, the

development of predictive mathematical models – solidly grounded in experimental data – is

essential. In contrast to knowledge discovery, simulation-based approaches attempt to

predict the dynamics of systems so that the validity of the underlying assumptions is

investigated. Models that survive initial validation are used to make predictions tested then

by experiments, as well as to explore biological phenomena not amenable to experimental

enquiry [69].

Computational models and statistical approaches

Similar to microfluidic platforms and microreactors described in the previous section, there

does not exist a ‘one size fits all’ approach that sufficiently models cellular behavior [76].

Interestingly, it is this aspect that promotes discussion between the experimentalist and

modeler, resulting in selection of the most appropriate mathematical formalism for each

biological question studied. In turn, experiments are designed to attain the maximum level of

spatiotemporal resolution.

Computational models that reconstruct a mechanism are categorized as either deterministic

or probabilistic. Ordinary differential equations (ODEs) are the most popular deterministic

formulism which, when accounting for spatial parameters, are described by partial

differential equations (PDEs) or compartmental models. Overall, each equation represents a

species’ continuous concentration over a specified timescale, typically denoted by mass-

action kinetics. Alternatively, algebraic substitutions such as Michaelis–Menten functions,

transfer functions or power laws [77] result in a condensed algorithm with more-complex

rates terms. Deterministic models remain the most appropriate framework to capture the

behavior of systems where species are abundant and reaction events occur frequently;

however, many cellular processes consist of molecular interactions that are intrinsically

random as a consequence of sufficiently low concentrations of molecules, or very slow

kinetics. To model these cellular processes, stochastic simulation algorithms or Monte Carlo

methods can be used. The latter approaches cope with different reaction timescales by

modeling molecules individually, where reaction events are calculated based on probability.

In recent years, hybrid approaches have evolved to minimize computational efforts by

partitioning fast kinetics within a continuous framework, whereas discrete stochastic

algorithms simulate slow reactions [78,79]. The fundamental assumptions underlying
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deterministic and stochastic algorithms, model design, verification, calibration (i.e. model

regression, training) and validation are beyond the scope of this review. Insightful

perspectives and reviews focused on applications in cell biology, systems biomedicine and

drug discovery are referenced elsewhere [76,77,80–82].

In contrast to modeling approaches based on prior knowledge of molecular mechanisms,

inference models are constructed from the actual data in the absence of any underlying

assumptions. Defined as data-driven models, a spectrum of inference techniques can be

employed to gain insights concerning relationships, interactions and influences among

multivariate biological components (Benedict and Lauffenburger 2013). Data-driven

techniques enable the integration of data obtained from entirely different metrics assessed at

diverse physiological scales. Although more abstract than deterministic models, data-driven

modeling approaches such as clustering, principle component analysis (PCA), partial least

squares (PLS; e.g. PLSR and PLSDA), decision trees and Bayesian inference networks

extract groups of molecular activities that are statistically associated with a given cell

phenotype or behavior. New hypotheses, derived directly from the mathematical analyses,

can be formulated and tested experimentally in an iterative manner.

During the past decade, data-driven models have emerged as standard tools for systems-

level research in signaling networks, as reviewed by Janes and Yaffe [83]. For example, a

cuesignal-response paradigm has been used in combination with multivariate analysis

techniques (e.g. PCA, PLS) to evaluate liver hepatotoxicity [84] and drug toxicity [85],

pathogenesis of inflammatory bowel disease [86] and applications for adoptive T cell

therapy of cancer [87]. In these designs, statistical methods glean signal–response

relationships from heterogeneous multivariate signaling data. To illustrate a cue-signal-

response compendium, Cosgrove et al. [85] evaluated idiosyncratic drug hepatotoxicity by

administering drugs to primary cells from multiple donors across a landscape of

inflammatory contexts including bacterial analog, lipopolysaccharide (LPS) and select

cytokines. Seventeen phosphoproteins were analyzed over time to capture the dynamic state

of the intracellular signaling network governing cell death as the phenotypic metric. This

framework reproduced clinical drug hepatotoxicity signatures in vitro and demonstrated

novel regulatory schemes contributing to hepatic cytotoxicity. Figure 2 illustrates the cue-

signal-response compendium and alternative analyses, which hold great promise in all areas

of regenerative medicine beyond signaling events to cell phenotypes, cell–cell interactions

and in vivo tissue function.

Contemporary experimental techniques offer biological insights at the molecular level; yet,

the collective knowledge associated with regulatory circuitry yields networks that are

irreducibly complex. An informative review by Hecker et al. [88] describes multiple

network inference models including one of the simplest architectures referred to as

information theory models [89], in addition to discrete dynamic Boolean networks [90] and

Bayesian networks that represent complex, stochastic and nonlinear relationships among

multiple interacting molecules [91]. Within the realm of cellular reprogramming, tissue

engineering and disease progression, network analyses have assessed the core transcriptional

regulatory circuitry of stem cell differentiation [92,93], cell–matrix adhesion networks (e.g.

integrin adhesome) [94] and cancer progression and regulation, respectively [95,96].
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The role of systems analyses in drug discovery

The systems biology approach, with its combination of computational, experimental and

observational enquiry, has extended from model systems to human physiology and now to

areas of pharmacology and human health. Systems biology exemplifies an integrative

perspective that is essential in drug discovery, thus enabling informed decisions (i.e. target

selection, isolated or combinatorial therapy, selection of the most appropriate model and

experimental system, a comprehensive understanding of the target and its regulatory role in

various pathways). Dynamic models promote drug discovery efforts [82,97], as well as

quantitative pharmacology and drug development [98,99]. Mechanistic and data-driven

models reviewed here are also highly relevant. For example, network analyses have

identified new drug targets, drug regimes and mechanisms of action [100–102], whereas

alternative statistical techniques are employed routinely to evaluate combinatorial effects of

drug screens. Similar to the methodologies reviewed, signature-based approaches are

defined by a series of drug-induced molecular and phenotypic measurements resulting in

multivariate signatures. Signature-based prediction is a compelling new strategy now used to

investigate drug mechanisms, and has recently been applied to combination chemotherapies

[103]. In conclusion, it is the multidisciplinary nature of systems biology that has the

potential to revolutionize our understanding of human physiology and pathophysiology. We

believe that data-driven models and dynamic multiscale models of biological systems will

ultimately transform drug discovery efforts toward a more holistic approach that accelerates

innovation and improves patient health.

Concluding remarks and future perspectives

The endeavors described above use interdisciplinary work coming from a broad range of

backgrounds, predominantly molecular and cell biology and physiology along with

traditional engineering disciplines such as chemical and mechanical engineering. At the

same time, the new discipline of biological engineering is arising as an intimately seamless

fusion of molecular and cellular life science with the most germane concepts and methods

for analysis and synthesis inherent in engineering (http://web.mit.edu/be/about/). Biological

engineering is precisely aimed at helping make biology-based technologies more gainfully

predictive in all realms of application, and prominent among these should be in vitro tissue

regeneration toward the goal of more-effective modeling of human disease and enhanced

prospects in drug discovery and development.
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Highlights

• Reliable in vitro models for human disease are needed

• Human cell-based models including iPS cell-based models are emerging

• Biomimetic matrices and substrates are crucial to recapitulate microenvironment

• Microfluidics and microfabrication technologies enable dynamic organ models

• Systems biology and multidisciplinary approaches are crucial to drug discovery
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Figure 1.
(a) Schematic diagram showing the hierarchical structural features of a tissue (e.g. the liver).

Cells seeded in conventional 2D systems are flat, and thus do not fully capture the

complexity of in vivo tissue behavior. Using biomaterial strategies and micro- or nano-

fabrication techniques, it is possible to introduce various cues such as the extracellular

matrix (ECM) and adhesion ligands that dictate release and sequestration of soluble cues

such as growth factors. At the next level, using multiple cell types (e.g. endothelial cells and

hepatocytes) can impact the fate and function of each cell type within the system while

establishing intercellular communications. Using various patterning techniques, it is possible

to control positioning of cells and to achieve improved homotypic and heterotypic cellular

organization. At the tissue level, the combinatorial effects of ECM and environmental cues,

as well as multicellular interactions in the 3D architecture, direct complex tissue behavior.

(b) Bioreactors and microfluidic devices enable perfusion of 3D tissue structures and

provide spatial and temporal control over soluble factors. Different micro-tissues can be

cultured and integrated into a single device, and can be engineered with organ-specific

biological cues connected by microfluidic systems. Integration of these features enables

investigation of interorgan communications through cytokines and additional soluble factors
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to capture the complex, dynamic behaviors of human organs. This same system can be used

during drug development processes to introduce various types of drugs through different

routes (e.g. oral, intravenous, topical or inhalation) and evaluate drug–tissue crosstalk. (c) A
fabricated platform to study communication between two micro-tissues using a microfluidic

system.
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Figure 2.
Data integration, beyond intracellular signaling events to cell phenotype, cell–cell

interactions and in vivo tissue function, is essential to advance experimental biology toward

a more predictive capability. Tissue engineering (blue circles) and systems biology

approaches (red circles) progress toward a research paradigm that integrates both disciplines

in parallel (purple circles), adapted, with permission, from [68]. Systems-level

computational efforts encompass physiochemical models (i.e. deterministic and stochastic)

as well as data-driven approaches [e.g. principle component analysis (PCA), partial least
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squares (PLS), Decision Tree and Bayesian networks]. Within regenerative medicine

research, the implementation of a systems biology framework is illustrated with respect to

modeling details that span mechanistic models to statistical relationships and inference

models. Collectively, these efforts incorporate biological contexts that extend from

prototypical cell lines or primary cells (e.g. 2D cultures) through monocultures or

heterotypic cell cultures (e.g. 3D cultures) to engineered and native tissue to organ

complexity (e.g. organ-on-a-chip) and communication between tissue models (e.g. human-

on-a-chip), while incorporating molecular detail assessed by metrics at multiple scales (gray

font).
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