25,250 research outputs found
ROOT - A C++ Framework for Petabyte Data Storage, Statistical Analysis and Visualization
ROOT is an object-oriented C++ framework conceived in the high-energy physics
(HEP) community, designed for storing and analyzing petabytes of data in an
efficient way. Any instance of a C++ class can be stored into a ROOT file in a
machine-independent compressed binary format. In ROOT the TTree object
container is optimized for statistical data analysis over very large data sets
by using vertical data storage techniques. These containers can span a large
number of files on local disks, the web, or a number of different shared file
systems. In order to analyze this data, the user can chose out of a wide set of
mathematical and statistical functions, including linear algebra classes,
numerical algorithms such as integration and minimization, and various methods
for performing regression analysis (fitting). In particular, ROOT offers
packages for complex data modeling and fitting, as well as multivariate
classification based on machine learning techniques. A central piece in these
analysis tools are the histogram classes which provide binning of one- and
multi-dimensional data. Results can be saved in high-quality graphical formats
like Postscript and PDF or in bitmap formats like JPG or GIF. The result can
also be stored into ROOT macros that allow a full recreation and rework of the
graphics. Users typically create their analysis macros step by step, making use
of the interactive C++ interpreter CINT, while running over small data samples.
Once the development is finished, they can run these macros at full compiled
speed over large data sets, using on-the-fly compilation, or by creating a
stand-alone batch program. Finally, if processing farms are available, the user
can reduce the execution time of intrinsically parallel tasks - e.g. data
mining in HEP - by using PROOF, which will take care of optimally distributing
the work over the available resources in a transparent way
Vessel tractography using an intensity based tensor model with branch detection
In this paper, we present a tubular structure seg- mentation method that utilizes a second order tensor constructed from directional intensity measurements, which is inspired from diffusion tensor image (DTI) modeling. The constructed anisotropic tensor which is fit inside a vessel drives the segmen- tation analogously to a tractography approach in DTI. Our model is initialized at a single seed point and is capable of capturing whole vessel trees by an automatic branch detection algorithm developed in the same framework. The centerline of the vessel as well as its thickness is extracted. Performance results within the Rotterdam Coronary Artery Algorithm Evaluation framework are provided for comparison with existing techniques. 96.4% average overlap with ground truth delineated by experts is obtained in addition to other measures reported in the paper. Moreover, we demonstrate further quantitative results over synthetic vascular datasets, and we provide quantitative experiments for branch detection on patient Computed Tomography Angiography (CTA) volumes, as well as qualitative evaluations on the same CTA datasets, from visual scores by a cardiologist expert
A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics
This paper presents a survey of ocean simulation and rendering methods in
computer graphics. To model and animate the ocean's surface, these methods
mainly rely on two main approaches: on the one hand, those which approximate
ocean dynamics with parametric, spectral or hybrid models and use empirical
laws from oceanographic research. We will see that this type of methods
essentially allows the simulation of ocean scenes in the deep water domain,
without breaking waves. On the other hand, physically-based methods use
Navier-Stokes Equations (NSE) to represent breaking waves and more generally
ocean surface near the shore. We also describe ocean rendering methods in
computer graphics, with a special interest in the simulation of phenomena such
as foam and spray, and light's interaction with the ocean surface
- …
