2,744 research outputs found

    Communication protocols and quantum error-correcting codes from the perspective of topological quantum field theory

    Full text link
    Topological quantum field theories (TQFTs) provide a general, minimal-assumption language for describing quantum-state preparation and measurement. They therefore provide a general language in which to express multi-agent communication protocols, e.g. local operations, classical communication (LOCC) protocols. Here we construct LOCC protocols using TQFT, and show that LOCC protocols induce quantum error-correcting codes (QECCs) on the agent-environment boundary. Such QECCs can be regarded as implementing, or inducing the emergence of, spacetimes on such boundaries. We investigate this connection between inter-agent communication and spacetime using BF and Chern-Simons theories, and then using topological M-theory.Comment: 52 page

    Voting Classifier for The Interactive Design with Deep Learning for Scene Theory

    Get PDF
    Tool products play a pivotal role in assisting individuals in various domains, ranging from professional work to everyday tasks. The success of these tools is not solely determined by their functionality but also by the quality of user experience they offer. Designing tool products that effectively engage users, enhance their productivity, and provide a seamless interaction experience has become a critical focus for researchers and practitioners in the field of interaction design. Scene theory proposes that individuals perceive and interpret their surroundings as dynamic "scenes," wherein environmental and situational factors influence their cognitive processes and behavior. This research paper presented a novel approach to the interaction design of tool products by integrating scene theory, flow experience, the Moth Flame optimization (MFO), cooperative game theory (CGT), and voting deep learning. Tool products play a vital role in various domains, and their interaction design significantly influences user satisfaction and task performance. Building upon the principles of scene theory and flow experience, this study proposes an innovative framework that considers the contextual factors and aims to create a seamless and enjoyable user experience. The MFO algorithm, inspired by the behavior of moth flame, is employed to optimize the design parameters and enhance the efficiency of the interaction design process. Furthermore, CGT is integrated to model cooperative relationships between users and tool products, fostering collaborative and engaging experiences. Voting deep learning is employed to analyze user feedback and preferences, enabling personalized and adaptive design recommendations. With the proposed CGT, this paper investigates the impact of the proposed approach on user engagement, task efficiency, and overall satisfaction. The findings contribute to the field of interaction design by providing practical insights for creating tool products that align with users' cognitive processes, environmental constraints, flow-inducing experiences, and cooperative dynamics

    Designing interactive virtual environments with feedback in health applications.

    Get PDF
    One of the most important factors to influence user experience in human-computer interaction is the user emotional reaction. Interactive environments including serious games that are responsive to user emotions improve their effectiveness and user satisfactions. Testing and training for user emotional competence is meaningful in healthcare field, which has motivated us to analyze immersive affective games using emotional feedbacks. In this dissertation, a systematic model of designing interactive environment is presented, which consists of three essential modules: affect modeling, affect recognition, and affect control. In order to collect data for analysis and construct these modules, a series of experiments were conducted using virtual reality (VR) to evoke user emotional reactions and monitoring the reactions by physiological data. The analysis results lead to the novel approach of a framework to design affective gaming in virtual reality, including the descriptions on the aspects of interaction mechanism, graph-based structure, and user modeling. Oculus Rift was used in the experiments to provide immersive virtual reality with affective scenarios, and a sample application was implemented as cross-platform VR physical training serious game for elderly people to demonstrate the essential parts of the framework. The measurements of playability and effectiveness are discussed. The introduced framework should be used as a guiding principle for designing affective VR serious games. Possible healthcare applications include emotion competence training, educational softwares, as well as therapy methods
    corecore