1,694,271 research outputs found
The Cooling Flow to Accretion Flow Transition
Cooling flows in galaxy clusters and isolated elliptical galaxies are a
source of mass for fueling accretion onto a central supermassive black hole. We
calculate the dynamics of accreting matter in the combined gravitational
potential of a host galaxy and a central black hole assuming a steady state,
spherically symmetric flow (i.e., no angular momentum). The global dynamics
depends primarily on the accretion rate. For large accretion rates, no simple,
smooth transition between a cooling flow and an accretion flow is possible; the
gas cools towards zero temperature just inside its sonic radius, which lies
well outside the region where the gravitational influence of the central black
hole is important. For accretion rates below a critical value, however, the
accreting gas evolves smoothly from a radiatively driven cooling flow at large
radii to a nearly adiabatic (Bondi) flow at small radii. We argue that this is
the relevant parameter regime for most observed cooling flows. The transition
from the cooling flow to the accretion flow should be observable in M87 with
the {\it Chandra X-ray Observatory}.Comment: emulateapj.sty, 10 pages incl. 5 figures, to appear in Ap
Transition to turbulence in particle laden flows
Suspended particles can alter the properties of fluids and in particular also
affect the transition from laminar to turbulent flow. In the present
experimental study, we investigate the impact of neutrally buoyant, spherical
inertial particles on transition to turbulence in a pipe flow. At low particle
concentrations, like in single phase Newtonian fluids, turbulence only sets in
when triggered by sufficiently large perturbations and, as characteristic for
this transition localized turbulent regions (puffs) co-exist with laminar flow.
In agreement with earlier studies this transition point initially moves to
lower Reynolds number (Re) as the particle concentration increases. At higher
concentrations however the nature of the transition qualitatively changes:
Laminar flow gives way to a globally fluctuating state following a continuous,
non-hysteretic transition. A further increase in Re results in a secondary
instability where localized puff-like structures arise on top of the uniformly
fluctuating background flow. At even higher concentration only the uniformly
fluctuating flow is found and signatures of Newtonian type turbulence are no
longer observed
Transition to turbulence in pulsating pipe flow
Fluid flows in nature and applications are frequently subject to periodic
velocity modulations. Surprisingly, even for the generic case of flow through a
straight pipe, there is little consensus regarding the influence of pulsation
on the transition threshold to turbulence: while most studies predict a
monotonically increasing threshold with pulsation frequency (i.e. Womersley
number, ), others observe a decreasing threshold for identical
parameters and only observe an increasing threshold at low . In the
present study we apply recent advances in the understanding of transition in
steady shear flows to pulsating pipe flow. For moderate pulsation amplitudes we
find that the first instability encountered is subcritical (i.e. requiring
finite amplitude disturbances) and gives rise to localized patches of
turbulence ("puffs") analogous to steady pipe flow. By monitoring the impact of
pulsation on the lifetime of turbulence we map the onset of turbulence in
parameter space. Transition in pulsatile flow can be separated into three
regimes. At small Womersley numbers the dynamics are dominated by the decay
turbulence suffers during the slower part of the cycle and hence transition is
delayed significantly. As shown in this regime thresholds closely agree with
estimates based on a quasi steady flow assumption only taking puff decay rates
into account. The transition point predicted in the zero limit equals
to the critical point for steady pipe flow offset by the oscillation Reynolds
number. In the high frequency limit puff lifetimes are identical to those in
steady pipe flow and hence the transition threshold appears to be unaffected by
flow pulsation. In the intermediate frequency regime the transition threshold
sharply drops (with increasing ) from the decay dominated (quasi
steady) threshold to the steady pipe flow level
Intube two-phase flow probabilities based on capacitance signal clustering
To study the objectivity in flow pattern mapping of horizontal two-phase flow in macroscale tubes, a capacitance sensor is developed for use with refrigerants. Sensor signals are gathered with R410A in an 8mm I.D. smooth tube at a saturation temperature of 15°C in the mass velocity range of 200 to 500kg/m²s and vapour quality range from 0 to 1 in steps of 0.025. A visual classification based on high speed camera images is made for comparison reasons. A statistical analysis of the sensor signals shows that the average and the variance are suitable for flow regime classification into slug flow, intermittent flow and annular flow by using a the fuzzy c-means clustering algorithm. This soft clustering algorithm perfectly predicts the slug/intermittent flow transition compared to our visual observations. The intermittent/annular flow transition is found at higher vapour qualities, but with the same trend compared to our observations and the prediction of [Barbieri et al., 2008, Flow patterns in convective boiling of refrigerant R-134a in smooth tubes of several diameters, 5th European Thermal-Sciences Conference, The Netherlands]. The intermittent/annular flow transition is very gradual. A probability approach can therefore better describe such a transition. The membership grades of the cluster algorithm can be interpreted as flow probabilities. These probabilities are further compared to time fraction functions of [Jassim et al., 2008, Prediction of refrigerant void fraction in horizontal tubes using probabilistic flow regime maps
Effect of an electric field on an intermittent granular flow
Granular gravity driven flows of glass beads have been observed in a silo
with a flat bottom. A DC high electric field has been applied perpendicularly
to the silo to tune the cohesion. The outlet mass flow has been measured. An
image subtraction technique has been applied to visualize the flow geometry and
a spatiotemporal analysis of the flow dynamics has been performed. The outlet
mass flow is independent of voltage, but a transition from funnel flow to
rathole flow is observed. This transition is of probabilistic nature and an
intermediate situation exists between the funnel and the rathole situations. At
a given voltage, two kinds of flow dynamics can occur : a continuous flow or an
intermittent flow. The electric field increases the probability to observe an
intermittent flow.Comment: Accepted for publication in PRE on Apr 9, 201
The influence of the reactor pressure on the hydrodynamics in a cocurrent gas-liquid trickle-bed reactor
The influence of the reactor pressure on the liquid hold-up in the trickle-flow regime and on the transition between trickle-flow and pulse-flow has been investigated in a trickle-flow column operating up to 6.0 MPa with water, and nitrogen or helium as the gas phase.\ud
\ud
The effect of the gas velocity and gas density on the hold-up has been explained by means of the modified Galileo number Ga{1+ΔP/(ρlgL)}. At the transition between trickle- and pulse-flow the liquid hold-up is - for a given value of the superficial gas velocity - nearly the same at each gas density. Therefore, at elevated gas densities the transition occurs at higher liquid throughputs. From a comparison of the experiments with water-nitrogen and water-helium it has been concluded that at an equal gas density - for given values of vl and vg - the hydrodynamic behaviour is the same
Collective flow and QCD phase transition
In the first part I discuss the sensitivity of collective matter expansion in
ultrarelativistic heavy-ion collisions to the transition between quark and
hadronic matter (physics of the softest point of the Equation of State). A kink
in the centrality dependence of elliptic flow has been suggested as a signature
for the phase transition in hot QCD matter. Indeed, preliminary data of NA49
presented at this conference show first indications for the predicted kink. In
the second part I have a look at the present theories of heavy-ion reactions.
These remarks may also be seen as a critical comment to B. Mueller's summary
talk (nucl-th/9906029) presented at this conference.Comment: Write-up of QM '99 talk. Typo's correcte
Experimental scaling law for the sub-critical transition to turbulence in plane Poiseuille flow
We present an experimental study of transition to turbulence in a plane
Poiseuille flow. Using a well-controlled perturbation, we analyse the flow
using extensive Particule Image Velocimetry and flow visualisation (using Laser
Induced Fluorescence) measurements and use the deformation of the mean velocity
profile as a criterion to characterize the state of the flow. From a large
parametric study, four different states are defined depending on the values of
the Reynolds number and the amplitude of the perturbation. We discuss the role
of coherent structures, like hairpin vortices, in the transition. We find that
the minimal amplitude of the perturbation triggering transition scales like
Re^-1
- …
