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INTRODUCTION 

Complex phenomena of two-phase flow occur during the 
phase change of refrigerant from liquid to vapour. To 
accurately predict the heat transfer and pressure drop, these 
flow phenomena should be incorporated in the design 
models for in-tube evaporators used in refrigeration and air-
conditioning [1-2]. Traditionally, this is achieved by 
classifying two-phase flows into flow regimes and 
presenting them in flow pattern maps.  

Recently, Cheng et al. [3] published a comprehensive 
review on flow regimes and flow pattern maps. Most of the 
two-phase flow classifications are based on visualizations 
(with or without use of high speed cameras). But visual-only 
methods are inherently subjective. Cheng et al. assign this as 
the main reason why flow-pattern data from different 
researchers are often inconsistent for similar test conditions. 
Objective methods can therefore contribute to more accurate 
flow-pattern data. 

Rather than purely classifying a flow into mutually 
exclusive regimes, the classification problem can also be 
approached by describing the flow as a combination of 
different flow regimes each with a certain probability. Nino 
et al. [4] introduced the probabilistic approach in multiport 
microchannels. Jassim and Newell [5] applied probabilistic 
flow regime mapping to predict pressure drop and void 
fraction in microchannels. van Rooyen et al. [6] used the 
same approach for intermittent flows during condensation in 
macroscale tubes.  Jassim et al. [7] obtained probabilistic 
two-phase flow data of R134a and R410A in single 
horizontal smooth, adiabatic tubes by using an automated 
image recognition technique. Several tubes were used with 
diameters ranging from 1.74mm to 8mm I.D. Jassim [8] 
developed curve fits for this time fraction data, which were 

used by Jassim et al. [9] for void fraction modeling and by 
Jassim et al. [10] for heat transfer modeling during 
condensation. However, so far it is not known how general 
such time fraction curve fits are [3]. 

This study aims to find more objectivity in flow pattern 
mapping. Therefore a capacitance probe was developed for 
use with refrigerants. The use of a signal clustering 
technique is investigated to objectively and probabilistically 
describe flow regime transitions. The outcome is compared 
with the time fraction curve fits of Jassim et al. to investigate 
their generality. 

EXPERIMENTAL MEASUREMENTS 

Refrigerant test facitily 

In Figure 1, a schematic of the refrigerant test facility is 
shown. Refrigerant is pumped from the condenser, through 
the preheater to the test section. By controlling the 
frequency of the pump the mass velocity, G, in the 
refrigerant loop is set. The preheater consists out of 6 tube-
in-tube heat exchangers with a total length of 15m. The 
length of the preheater can be altered between 1m and 15m 
in steps of 1m to allow optimal flexibility in setting the 
vapour quality, x, at entrance of the test section. The hot 
water flow rate in the annuli of the preheater is controlled by 
a 3-way valve. A boiler system heats a 2000 liter tank to 
provide hot water at a stable temperature during the 
experiments. The vapour-liquid mixture that leaves the test 
section is condensed in a plate heat exchanger. The ice water 
needed in the condenser is supplied from a 1000 liter tank 
which is coooled by a chiller system. The reservoir is 
submerged in a water bath. By changing the water 
temperature, the saturation pressure can be set. 
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Figure 1: Scheme of refrigerant test facility 
 

The test section includes an 8mm I.D. tube, a sight glass 
with back lightning and a high speed camera (250fps), as 
well as the capacitance sensor. The flow in the test section is 
fully developed and a constant tube diameter is assured over 
the full section with as little disturbances as possible.  

The mass velocity of the refrigerant is measured using a 
coriolis type flow meter with an accuracy of ±0.2% o.r. The 
hot water flow rate is measured with a magnetic type flow 
meter with an accuracy of ±0.5% o.r. All thermocouples are 
of type K and insitu calibrated with an uncertainty of 
±0.05°C. The uncertainty in the heat balance of the preheater 
is monitored online. Measurements were accepted if the 
uncertainty in the heat balance was smaller than ±2% (with 
an exceptional ±4% for G=200kg/m²s and x<0.125) and all 
temperature measurements of the preheater were stable 
within the uncertainty of ±0.05°C. The saturation 
temperature at exit of the preheater was controlled within 
±0.5°C. 

Capacitance sensor 

A capacitance probe with a concave electrode 
configuration was developed for dynamic two-phase flow 
measurements with refrigerants [11]. Capacitance probes use 
the difference in electrical permittivity of liquid and vapour. 
The output of the probe is a voltage signal proportional to 
the capacitance of the two-phase mixture between the 
electrodes. To acquire (quasi)-local two-phase flow data, the 
electrode width is equal to the diameter of the tube. In 
Figure 2, the electrode configuration is illustrated. The 
capacitance between the middle electrodes is measured. The 
outer electrode pairs are used for guarding purposes. 

 
Figure 2: Electrode configuration of the capacitance probe 

 
The electronic transducer charges and discharges the 

capacitance between the electrodes at 1MHz. The electric 
current that flows because of this charging and discharging 
is converted to a voltage signal. These voltage signals are 
gathered at a sample frequency of 1kHz with a National 
Instruments DAQ system and made dimensionless according 
to Eq. (1). VL and VV are the voltage levels of liquid only and 
vapour only flowing in the tube. 
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A temperature compensation was performed to VL. The 
negative slope of the temperature-VL calibration curve 
corresponds with the decreasing dielectric constant of liquid 
refrigerant in function of temperature. The influence of 
temperature on the dielectric constant of the vapour phase is 
negligible. After the temperature compensation, all 
measurements of VL and VV fall within ±4mV. There was no 
significant difference in VL or VV between the start and the 
end of the experiments. Drift from the electronic transducer 
can therefore be neglected.  

The sensitivity of the transducer is 1.16V/pF. At 15°C, 
the difference between VL and VV was measured ∆V = 
1.32V. The difference in electric capacitance between liquid 
flow and vapour flow is thus 1.14pF. The noise level of both 
full liquid and full vapour flow is 10mV (peak to peak). The 
corresponding uncertainty, evaluated as 2σ is ±4mV or 0.3% 
of ∆V, resulting in signal-to-noise ratios, SNR > 300. The 
step response of the transducer on a change in capacitance of 
1pF was faster than the sample frequency (1000Hz or 1ms).  

Three typical sensor signals are shown in Figure 3. They 
are obtained with R410A at Tsat=15°C. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3: Sensor signal examples (a) slug flow (b) intermittent flow (c) annular flow



 
Dataset and visual classification 

Capacitance sensor signals are gathered for R410A at 
Tsat=15°C in an 8mm tube. Four series at mass velocities 
from G=200 to 500kg/m²s are obtained with vapour qualities 
ranging from 0 to 1 in steps of 0.025. In Figure 4, the dataset 
with our visual classification is shown in a Wojtan-
Ursenbacher-Thome flowmap [12] (dashed G=200kg/m²s; 
full G=500kg/m²s) under adiabatic conditions. Additionally 
the intermittent/annular flow transition (dash-dot) of 
Barbieri et al. [13] is plotted (Eq. 2).  
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Using high speed camera images, the observed two-phase 

flows were classified into slug flow, intermittent flow and 
annular flow. The liquid slugs have to fill the entire tube but 
can be aerated to be classified as slug flow. In annular flow, 
the motion of the liquid flowing at the top of the tube should 
be comparable to the motion of liquid at the bottom. 
Intermittent flow groups the remaining two-phase flows. 

Our visual slug/intermittent flow transition has the same 
trend but is less dependent on G compared to the Wojtan-
Ursenbacher-Thome transition. The intermittent/annular 
flow transition of Wojtan et al. is found at a constant value 
of the Martinelli parameter Xtt = 0.34. Thus, only density 
and viscosity are taken into account. Barbieri et al. 
introduced a dependency on G and D. Their transition agrees 
much better with our visual observations compared to the 
transition of Wojtan et al. Again our classification is less 
dependent on G. But this transition is very gradual. It is 
difficult to judge when the annular flow criterion is fulfilled. 
A probabilistic approach, proposed by Jassim et al. can 
better describe gradual transitions like this one. Dryout is 
predicted by the map of Wojtan et al. but neither expected 
nor observed in our images. 

 

 
Figure 4: Flow map with our visual classification  

(� slug flow – x intermittent flow – ο annular flow) 
 

 
 The typical flow phenomena are represented in the 
sensor signals. In slugs flows (Figure 3a) , a peak in the 
signal appears for ever liquid slug flowing between the 
electrodes. The vapour bubbles cause the peak to be slightly 
smaller than unity. In between the slugs, wavy surfaces are 

detected. Annular flows (Figure 3c) have low V* values due 
to the high void fractions, with small but high frequent 
variations because of the disturbances in the annular liquid-
vapour interface. In intermittent flow (Figure 3b) the larger 
liquid content results in intermediate V*-values which vary 
at intermediate frequencies in a rather irregular pattern, 
typical for this chaotic type of flow. 
 The sensor signals are know investigated for their flow 
regime classification potential in order to find more 
objectivity in the flow pattern maps.  

DATA MINING 

Feature selection 

The clustering algorithm which will be used to find 
objective flow regime transitions, needs input features 
deduced from the sensor signals, which can distinguish the 
different flow regimes. In the time domain, four statistical 
features can describe the distinct aspect of an underlying 
distribution. Namely, the average (AVG), the variance (M2), 
the skewness (M3) and the kurtosis (M4). These features 
determine the shape of the probability density estimation 
(PDE) of the signal. In Figure 5, the average and the 
variance of the signals are plotted in function of vapour 
quality. 

The signal features can be investigated for their ability of 
flow regime classification by using the Fisher Criterion [14]. 
This criterion quantitatively determines whether a feature is 
able to separate two classes  i and i’. The considered classes 
are slug flow, intermittent flow and annular flow and our 
visual observations are used to classify the data points.  

First, a Fisher discriminant Jii’(k) is determined Eq.(3), 
with mi(k) the mean of feature k of the data points in class i 
and σ²i(k) the variance of feature k of the data points in class 
i. The score of the Fisher Criterion for a selected feature is 
then the average of Jii’ for all combination of classes i and i’. 
The higher the Fisher score, the better the ability of the 
feature in separating the considered classes. 

    
[ ]

)()(
)()(

)( 2
'

2

2
'

' kk
kmkm

kJ
ii

ii
ii σσ +

−
=   (3) 

 
The Fisher criterion was first applied to the full data set 

with three flow regimes. The results are shown in Table 1. 
The average and the variance have a significantly larger 
score compared to the skewness and the kurtosis. If the 
intermittent flow data and the annular flow data are grouped 
in a non-slug flow class, then the score of the variance 
increases. The presence of liquid slugs causes a second 
maximum in the probability density estimation, PDE, at high 
vapour qualities, causing the variance to be significantly 
larger compared to the variance of non-slug flows. This is 
clearly visible in Figure 5. The variance thus has the highest 
potential in separating slug flows from non-slug flows. This 
transition occurs in a narrow zone. The same conclusion 
applies if only slug flow data and intermittent flow data are 
considered. 
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(b) 

Figure 5: Average (a) and variance (b) of the dimensionless sensor signals 
 

 
When slug flow data and intermittent flow data are 

grouped into a non-annular flow class, the average has the 
highest score. The same results are found when only 
intermittent and annular flow data are considered. In contrast 
with the variance, the average decreases smoothly with 
increasing vapour quality. No sudden change in the trend 
appears in the transition zone from intermittent flow to 
annular flow. This transition zone is broad. No single feature 
was found to optimally describe this transition.  

 
Table 1: Results of the Fisher Criterion 

 All 
data 

S/non-S S-I only A/non-A I-A only 

AVG 3.676 2.645 1.811 1.804 2.553 
M2 3.399 4.958 4.578 0.2 0.385 
M3 0.391 0.585 0.374 0.89 0.020 
M4 0.017 0.014 0.002 0.021 0.018 

 
The signals can further be investigated in the frequency 

domain. A lot of features can be deduced, like bandwidth 
contribution parameters of the power density spectrum, the 
average power density, average frequency etc. But because a 
lot of scatter appears in this data, none of these parameters are 
found suitable for use in combination with the clustering 
algorithm. 

 
Fuzzy c-means clustering algorithm [15] 

A clustering algorithm is an unsupervised learning method. 
The goal of such a method is to deduce properties from a 
dataset, without the help of a supervisor providing correct 
answers for each observation. In the case of two-phase flow 
classification, no visual decisions are needed. Clustering 
analysis tries to group a collection of objects into subsets or 
clusters such that those within each cluster are more closely 
related to one another than objects assigned to different 
clusters. An object is a selection of input features deduced 
from a sensor signal.  The choice of these input features is 
fundamental to the clustering technique. 

The choice of a dissimilarity measure between two objects, 
the distance function, is a second important factor. By far the 

most common choice of the distance function is the squared 
or Euclidian distance between two objects yj and yj’ (Eq. 4). 
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This is a weighted average of squared feature distances 

with wk the weight parameters and y the positions of the 
objects in feature space. Each object is iteratively assigned to 
one cluster based on the minimization of an objective 
function. Each of the weight parameters can be chosen to set 
the relative importance of the features upon the degree of 
similarity of the objects. Variables that are more relevant in 
separating the clusters should of course be assigned a higher 
influence in defining object dissimilarity. 

The Fuzzy c-means clustering algorithm is a soft-clustering 
algorithm. This means that each data point is assigned to a 
cluster to some degree that is specified by a membership 
grade. This makes it possible to describe the boundaries 
between clusters in a smooth way. This membership grade 
MG can thus, in the case of clustering two-phase flow signals, 
be interpreted as flow regime probabilities. Since the aim of 
the signal clustering is finding a probabilistic description of 
flow regime boundaries, this soft-clustering algorithm is the 
preferred choice amongst other clustering algorithms like k-
means clustering or hierarchical clustering. 

 
Cluster classification 

The output of the clustering algorithm is thus a 
membership grade of each class for every data point. A 
membership grade  of unity means the sensor signal is typical 
for that class. The data point is assigned to the class for which 
it has the highest membership grade. The fuzzy c-means 
clustering algorithm is applied with as input features the AVG 
and M2. These features were selected for having the highest 
flow regime classification potential based on the visual 
classification.  



 

 
Figure 6: Flow map with cluster classification  

(x slug flow – � intermittent flow – ∇ annular flow) 
 
In Figure 6, the result of the cluster classification is shown 

in the flow map. A remarkable agreement is found with our 
visual classification. The trends of both slug/intermittent and 
intermittent/annular transitions are completely similar. The 
cluster classification confirms the smaller dependency on G, 
compared to transitions of Wojtan et al. and Barbieri et al. 
This is not surprising, because the AVG and M2 do not differ 
a lot for different mass velocities (cfr. Figure 5) The location 
of the slug/intermittent transition of the cluster classification 
coincides perfectly with our visual classification (cfr. Figure 
4). The variance of each signal can successfully predict the 
presence of liquid slugs, as proved in the feature selection. 
The intermittent/annular transition instead has the same 
location at G=200kg/m²s, but has an even steeper slope in 
function of vapour quality compared to our visual 
classification. Therefore this transition has an even larger 
deviation from the transition of Barbieri et al. 

 

 
Figure 7: Membership grades (MG) of the cluster algorithm 

(x slug flow – � intermittent flow – ∇ annular flow) 
 
In Figure 7, the membership grades of the data points 

found by the clustering algorithm are plotted in function of G 
and x. Because of the properties of the algorithm, the 
membership grades decline for vapour qualities smaller than 
the typical slug flow data point and vapour qualities larger 
than the typical annular flow data point. Therefore some post-
processing is necessary to use the membership grades as flow 
regime probabilities. 

Post-processing 

First of all the maxima and minima of the slug flow and 
annular flow membership grades are traced for each mass 
velocity series. These MG are kept constant at the maximum 
and minimum value outside the vapour qualities 
corresponding with the maxima and minima. The MG of 
intermittent flow are then recalculated using Eq. 5. This 
recalculation does not effect the transitions, but only the data 
points near x=0 and x=1. 

 

ASI MGMGMG −−= 1   (5) 
 

The membership grades are now consistent with the 
probabilistic flow regime approach and can be interpreted as 
probabilities, P. To generalize the probabilities, a regression 
is performed for every mass velocity series. Chapman 
functions (Eq. 6a) are used for the slug flow probabilities and 
sigmoid functions (Eq.6b) for the annular flow probabilities. 
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Because of the residuals of the regression, a final rescaling is 
necessary using Eq. 7 to make the maximum probability unity 
and the minimum zero. This rescaling has only a significant 
effect for G=200kg/m²s and G=300kg/m²s. Finally the 
probability for intermittent flow is found (Eq. 8). In Table 2, 
the regression coefficients with corresponding R-squared 
values are shown, as well as the necessary scaling factors.  
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Table 2: Regression coefficients with R-squared values  
and scaling factors 

G [kg/m²s] 200 300 400 500 
S a -0.968 -0.9832 -0.994 -0.9987 
 b 121.9 52.98 105.5 121.1 
 c 5140e3 300.4 6333 2352 
 P0 0.9644 0.9826 0.9965 1.002 
 R² 0.9962 0.9979 0.9992 0.9987 
 pmin 1.57e-3 -5.79e-4 2.49e-3 3.21e-3 
 1-pmax 3.56e-2 1.74e-2 3.47e-3 -1.88e-3 
A a 15.72 18.53 19.19 22.69 
 b 0.5809 0.5234 0.4847 0.4157 
 R² 0.9990 0.9991 0.9992 0.9994 
 pmin 1.08e-4 6.12e-5 9.13e-5 8.01e-5 
 1-pmax 1.37e-3 1.46e-4 5.08e-5 1.75e-6 
I R² 0.9979 0.9982 0.9989 0.9988 
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Figure 8: (a)-(d): Capacitance signal cluster probabilities (--x-- slug flow, -·-�-·- intermittent flow, -∇- annular flow) 

(e)-(h) Time fraction functions of Jassim et al. [8-9] (dashed: intermittent/liquid flow, dashed-dotted: stratified, solid: annular 
flow) 



 

DISCUSSION 

In Figure 8, the probability functions P are plotted for the 
different mass velocity series (a-d). The generalized time 
fractions functions of Jassim et al. [8-9], evaluated for R410A 
in an 8mm tube at Tsat = 15°C, are plotted in Figure 8 (e-h). 

 It should be mentioned that the time fraction functions 
were developed from time fraction data with R134a at 25°C, 
35°C and 50°C, R410A at 25°C, G from 100 to 400 kg/m²s, x 
from 0 to 1 in 8.00mm, 5.43mm and 3.90mm smooth, 
adiabatic, horizontal tubes [9]. The plotted time fraction 
functions are thus plotted for a lower temperature (15°C) and 
extrapolated to G=500kg/m²s. Jassim et al. considered time 
fractions for the intermittent/liquid, stratified and annular 
flow regimes. The intermittent and liquid flow regimes were 
grouped since the liquid flow regime was relatively 
insignificant. The time fraction data was obtained using an 
automated image recognition technique [7]. The pixel 
brightness at different locations in the tube was used to 
classify the images. 

This time fraction classification thus uses different 
classification criteria compared to our cluster classification. 
For instance, they do not distinguish slug flow from 
intermittent flow, but consider slug flow as a combination of 
liquid/intermittent flow and stratified flow. Therefore, a direct 
comparison of the time fractions with the traditional 
classification (used in the flow map of Wojtan et al.) and our 
cluster classification is not straightforward. Nevertheless, 
some analogies can be drawn.   

Especially at G=200 kg/m²s, the probabilities for annular 
flow correspond well. The 50% probability almost coincides 
and the shape is the same. At higher mass velocities, the PA of 
Jassim et al. shift farther to lower x compared to the cluster 
PA. So, again our data is less dependent on G. From the time 
fractions it can be deduced that the intermittent/annular flow 
transition is narrower at higher mass velocities. This is not 
observed in our probabilities. The width of the transition zone 
remains more constant. This is better visualized in Figure 9, 
which shows the probabilities contour lines in the flow map, 
together with our visual classification. The 
intermittent/annular flow transition is very gradual with a 
width of over ∆x = 0.25. The slug/intermittent flow transition 
instead is a narrow transition zone. The contourlines indicate 
a width of approximately ∆x = 0.05. 

The presence of large liquid/intermittent time fractions is 
an indication of the presence of liquid slugs. Both the time 
fraction function and the cluster probabilities confirm the 
narrow transition zone at all mass velocities. 

Because the clustering algorithm compares and groups the 
sensor signals instead of analyzing time elements of a single 
signal, the probabilities of each class reach a maximum at 
unity. This maximum corresponds with the typical signal of 
each flow regime. In the time fractions this maximum does 
not have to be unity, which is notable for the stratified flow 
probability. But the position of that maximum can be 
interpreted as the location of the most typical two-phase flow 
of that flow regime.  At G=200kg/m²s, the locations of the 
maxima of the time fraction function for stratified flow and 
the cluster probability for intermittent flow coincide well. 
Because of the larger dependency on G of the time functions, 
this comparison can not be extended to higher mass 
velocities. 

 
Figure 9: Probability flow map with our visual classification 

(x slug flow – � intermittent flow – ∇ annular flow) 
 

CONCLUSIONS 

A capacitance probe and transducer are developed for use 
with refrigerants. Sensor signals are gathered with R410A in 
an 8mm I.D. smooth tube at a saturation temperature of 15°C 
in the mass velocity range of 200 to 500kg/m²s and vapour 
quality range from 0 to 1 in steps of 0.025. A visual 
classification based on high speed camera images is made for 
comparison reasons.  

The signal average and variance are found suitable for 
flow regime classification into slug flow, intermittent flow 
and annular flow. The use of the c-means fuzzy clustering 
algorithm is investigated for objective flow regime 
classification purposes.  

The algorithm perfectly predicts the slug/intermittent flow 
transition compared to our visual observations. The 
intermittent/annular flow transition is found at higher vapour 
qualities, but with a similar trend. 

The membership grades of the cluster algorithm can be 
interpreted as flow probabilities. These flow probabilities are 
presented in a flow map to quantify the width of the transition 
zone and compared with the time fraction function of Jassim 
et al. 

 
NOMENCLATURE 

AVG average 
d distance in feature space 
D diameter    [m] 
F time fraction   [-] 
g gravitational accelaration  [m/s²]  
G mass velocity   [kg/m²s] 
J Fisher score 
m mean 
MG membership grade  [-] 
M2 variance 
P probability   [-] 
p scaling factor   [-] 
T temperature   [°C] 
V voltage signal   [V]  
V* dimensionless voltage signal [-] 
w weight parameter 
x vapour quality   [-] 
y location in feature space 



 
 
∆ difference 
µ dynamic viscosity  [Pa s] 
ρ density    [kg/m³] 
σ standard deviation 
σ² variance 
 
A annular flow 
DAQ data acquisition 
I intermittent flow 
L liquid 
S slug flow 
sat saturation 
V vapour 
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