216 research outputs found

    Bounded Distributed Flocking Control of Nonholonomic Mobile Robots

    Full text link
    There have been numerous studies on the problem of flocking control for multiagent systems whose simplified models are presented in terms of point-mass elements. Meanwhile, full dynamic models pose some challenging problems in addressing the flocking control problem of mobile robots due to their nonholonomic dynamic properties. Taking practical constraints into consideration, we propose a novel approach to distributed flocking control of nonholonomic mobile robots by bounded feedback. The flocking control objectives consist of velocity consensus, collision avoidance, and cohesion maintenance among mobile robots. A flocking control protocol which is based on the information of neighbor mobile robots is constructed. The theoretical analysis is conducted with the help of a Lyapunov-like function and graph theory. Simulation results are shown to demonstrate the efficacy of the proposed distributed flocking control scheme

    Formation Control of Nonholonomic Multi-Agent Systems

    Get PDF
    This dissertation is concerned with the formation control problem of multiple agents modeled as nonholonomic wheeled mobile robots. Both kinematic and dynamic robot models are considered. Solutions are presented for a class of formation problems that include formation, maneuvering, and flocking. Graph theory and nonlinear systems theory are the key tools used in the design and stability analysis of the proposed control schemes. Simulation and/or experimental results are presented to illustrate the performance of the controllers. In the first part, we present a leader-follower type solution to the formation maneuvering problem. The solution is based on the graph that models the coordination among the robots being a spanning tree. Our control law incorporates two types of position errors: individual tracking errors and coordination errors for leader-follower pairs in the spanning tree. The control ensures that the robots globally acquire a given planar formation while the formation as a whole globally tracks a desired trajectory, both with uniformly ultimately bounded errors. The control law is first designed at the kinematic level and then extended to the dynamic level. In the latter, we consider that parametric uncertainty exists in the equations of motion. These uncertainties are accounted for by employing an adaptive control scheme. In the second part, we design a distance-based control scheme for the flocking of the nonholonomic agents under the assumption that the desired flocking velocity is known to all agents. The control law is designed at the kinematic level and is based on the rigidity properties of the graph modeling the sensing/control interactions among the robots. A simple input transformation is used to facilitate the control design by converting the nonholonomic model into the single-integrator equation. The resulting control ensures exponential convergence to the desired formation while the formation maneuvers according to a desired, time-varying translational velocity. In the third part, we extend the previous flocking control framework to the case where only a subset of the agents know the desired flocking velocity. The resulting controllers include distributed observers to estimate the unknown quantities. The theory of interconnected systems is used to analyze the stability of the observer-controller system

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion

    Flocking control against the malicious agent

    Full text link
    This paper investigates the flocking control of a swarm with a malicious agent that falsifies its controller parameters to cause collision, division, and escape of agents in the swarm. A novel geometric flocking condition is established by designing the configuration of the malicious agent and its neighbors, under which we propose a hierarchal geometric configuration-based flocking control method. To help detect the malicious agent, a parameter estimate mechanism is also provided. The proposed method can achieve the flocking control goal and meanwhile contain the malicious agent in the swarm without removing it. Experimental result shows the effectiveness of the theoretical result
    • …
    corecore