316 research outputs found

    Stability and Equilibrium Analysis of Laneless Traffic with Local Control Laws

    Full text link
    In this paper, a new model for traffic on roads with multiple lanes is developed, where the vehicles do not adhere to a lane discipline. Assuming identical vehicles, the dynamics is split along two independent directions: the Y-axis representing the direction of motion and the X-axis representing the lateral or the direction perpendicular to the direction of motion. Different influence graphs are used to model the interaction between the vehicles in these two directions. The instantaneous accelerations of each car, in both X and Y directions, are functions of the measurements from the neighbouring cars according to these influence graphs. The stability and equilibrium spacings of the car formation is analyzed for usual traffic situations such as steady flow, obstacles, lane changing and rogue drivers arbitrarily changing positions inside the formation. Conditions are derived under which the formation maintains stability and the desired intercar spacing for each of these traffic events. Simulations for some of these scenarios are included.Comment: 8 page

    Development of Path Following and Cooperative Motion Control Algorithms for Autonomous Underwater Vehicles

    Get PDF
    Research on autonomous underwater vehicle (AUV) is motivating and challenging owing to their specific applications such as defence, mine counter measure, pipeline inspections, risky missions e.g. oceanographic observations, bathymetric surveys, ocean floor analysis, military uses, and recovery of lost man-made objects. Motion control of AUVs is concerned with navigation, path following and co-operative motion control problems. A number of control complexities are encountered in AUV motion control such as nonlinearities in mass matrix, hydrodynamic terms and ocean currents. These pose challenges to develop efficient control algorithms such that the accurate path following task and effective group co-ordination can be achieved in face of parametric uncertainties and disturbances and communication constraints in acoustic medium. This thesis first proposes development of a number of path following control laws and new co-operative motion control algorithms for achieving successful motion control objectives. These algorithms are potential function based proportional derivative path following control laws, adaptive trajectory based formation control, formation control of multiple AUVs steering towards a safety region, mathematical potential function based flocking control and fuzzy potential function based flocking control. Development of a path following control algorithm aims at generating appropriate control law, such that an AUV tracks a predefined desired path. In this thesis first path following control laws are developed for an underactuated (the number of inputs are lesser than the degrees of freedom) AUV. A potential function based proportional derivative (PFPD) control law is derived to govern the motion of the AUV in an obstacle-rich environment (environment populated by obstacles). For obstacle avoidance, a mathematical potential function is exploited, which provides a repulsive force between the AUV and the solid obstacles intersecting the desired path. Simulations were carried out considering a special type of AUV i.e. Omni Directional Intelligent Navigator (ODIN) to study the efficacy of the developed PFPD controller. For achieving more accuracy in the path following performance, a new controller (potential function based augmented proportional derivative, PFAPD) has been designed by the mass matrix augmentation with PFPD control law. Simulations were made and the results obtained with PFAPD controller are compared with that of PFPD controlle

    Task-driven multi-formation control for coordinated UAV/UGV ISR missions

    Get PDF
    The report describes the development of a theoretical framework for coordination and control of combined teams of UAVs and UGVs for coordinated ISR missions. We consider the mission as a composition of an ordered sequence of subtasks, each to be performed by a different team. We design continuous cooperative controllers that enable each team to perform a given subtask and we develop a discrete strategy for interleaving the action of teams on different subtasks. The overall multi-agent coordination architecture is captured by a hybrid automaton, stability is studied using Lyapunov tools, and performance is evaluated through numerical simulations

    Finite-time Motion Planning of Multi-agent Systems with Collision Avoidance

    Full text link
    Finite-time motion planning with collision avoidance is a challenging issue in multi-agent systems. This paper proposes a novel distributed controller based on a new Lyapunov barrier function which guarantees finite-time stability for multi-agent systems without collisions. First, the problem of finite-time motion planning of multi-agent systems is formulated. Then, a novel finite-time distributed controller is developed based on a Lyapunov barrier function. Finally, numerical simulations demonstrate the effectiveness of proposed method

    A Decentralized Control Framework for Energy-Optimal Goal Assignment and Trajectory Generation

    Full text link
    This paper proposes a decentralized approach for solving the problem of moving a swarm of agents into a desired formation. We propose a decentralized assignment algorithm which prescribes goals to each agent using only local information. The assignment results are then used to generate energy-optimal trajectories for each agent which have guaranteed collision avoidance through safety constraints. We present the conditions for optimality and discuss the robustness of the solution. The efficacy of the proposed approach is validated through a numerical case study to characterize the framework's performance on a set of dynamic goals.Comment: 6 pages, 3 figures, to appear at the 2019 Conference on Decision and Control, Nice, F

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Almost Global Asymptotic Formation Stabilization Using Navigation Functions

    Get PDF
    We present a navigation function through which a group of mobile agents can be coordinated to achieve a particular formation, both in terms of shape and orientation, while avoiding collisions between themselves and with obstacles in the environment. Convergence is global and complete, subject to the constraints of the navigation function methodology. Algebraic graph theoretic properties associated with the interconnection graph are shown to affect the shape of the navigation function. The approach is centralized but the potential function is constructed in a way that facilitates complete decentralization. The strategy presented will also serve as a point of reference and comparison in quantifying the cost of decentralization in terms of performance

    Formation Control for a Fleet of Autonomous Ground Vehicles: A Survey

    Get PDF
    Autonomous/unmanned driving is the major state-of-the-art step that has a potential to fundamentally transform the mobility of individuals and goods. At present, most of the developments target standalone autonomous vehicles, which can sense the surroundings and control the vehicle based on this perception, with limited or no driver intervention. This paper focuses on the next step in autonomous vehicle research, which is the collaboration between autonomous vehicles, mainly vehicle formation control or vehicle platooning. To gain a deeper understanding in this area, a large number of the existing published papers have been reviewed systemically. In other words, many distributed and decentralized approaches of vehicle formation control are studied and their implementations are discussed. Finally, both technical and implementation challenges for formation control are summarized

    Leader-Follower Control with Odometry Error Analysis

    Get PDF
    In this paper we present a leader-follower control law that enables a mobile robot to track a desired trajectory, and allows us to specify the position in the plane of the follower robot with respect to the leader robot. We first describe the dynamic model of the plant, including input torques, and friction forces. Then the control law is developed using backstepping, and it is proved to asymptotically stabilize the tracking error to the origin. Simulation and experimental results of the closed loop system are presented, highlighting its potential application to formation control. The special case of pure tracking (without bi-dimensional position information use) is analyzed, showing that it can be applied to particular classes of non-feasible trajectories. Finally, motivated by some observations on the experiments, the effects of odometry errors are analyzed, revealing that boundedness of the tracking errors can be guaranteed if absolute position information becomes available periodically
    corecore