2 research outputs found

    Delayed Response and Biosonar Perception Explain Movement Coordination in Trawling Bats

    Get PDF
    Animal coordinated movement interactions are commonly explained by assuming unspecified social forces of attraction, repulsion and alignment with parameters drawn from observed movement data. Here we propose and test a biologically realistic and quantifiable biosonar movement interaction mechanism for echolocating bats based on spatial perceptual bias, i.e. actual sound field, a reaction delay, and observed motor constraints in speed and acceleration. We found that foraging pairs of bats flying over a water surface swapped leader-follower roles and performed chases or coordinated manoeuvres by copying the heading a nearby individual has had up to 500 ms earlier. Our proposed mechanism based on the interplay between sensory-motor constraints and delayed alignment was able to recreate the observed spatial actor-reactor patterns. Remarkably, when we varied model parameters (response delay, hearing threshold and echolocation directionality) beyond those observed in nature, the spatio-temporal interaction patterns created by the model only recreated the observed interactions, i.e. chases, and best matched the observed spatial patterns for just those response delays, hearing thresholds and echolocation directionalities found to be used by bats. This supports the validity of our sensory ecology approach of movement coordination, where interacting bats localise each other by active echolocation rather than eavesdropping

    Flocking for Multi-Agent Dynamical Systems

    Get PDF
    In this thesis, we discuss models for multi-agent dynamical systems. We study the tracking/migration problem for flocks and a theoretical framework for design and analysis of flocking algorithm is presented. The interactions between agents in the systems are denoted by potential functions that act as distance functions, hence, the design of proper potential functions are crucial in modelling and analyzing the flocking problem for multi-agent dynamical systems. Constructions for both non-smooth potential functions and smooth potential functions with finite cut-off are investigated in detail. The main contributions of this thesis are to extend the literature of continuous flocking models with impulsive control and delay. Lyapunov function techniques and techniques for stability of continuous and impulsive switching system are used, we study the asymptotic stability of the equilibrium of our models with impulsive control and discovery that by applying impulsive control to Olfati-Saber's continuous model, we can remove the damping term and improve the performance by avoiding the deficiency caused by time delay in velocity sensing. Additionally, we discuss both free-flocking and constrained-flocking algorithm for multi-agent dynamical system, we extend literature results by applying velocity feedbacks which are given by the dynamical obstacles in the environment to our impulsive control and successfully lead to flocking with obstacle avoidance capability in a more energy-efficient way. Simulations are given to support our results, some conclusions are made and future directions are given
    corecore