7 research outputs found

    Diseño y construcción de un helicóptero coaxial controlado sobre Android

    Get PDF
    El presente proyecto sienta las bases para el desarrollo de un helicóptero coaxial autónomo. Como principales novedades, se quiere destacar el manejo y control de este. El manejo del helicóptero se consigue desplazando el centro de gravedad. Por otro lado, el control se realiza mediante los sensores de un Smartphone a bordo de la aeronave. Este teléfono además, proporcionará una amplia gama de recursos para el desarrollo de futuras aplicaciones, como pueden ser la cámara o GPS. También se desarrolla la aplicación para enviar órdenes desde el exterior para maniobrar el helicóptero. Este trabajo se lleva a cabo conjuntamente con mi compañero Eduardo Ortega Biber (1), quién se enfoca en las tareas de diseño y simulación. Mientras que el actual proyecto, se centra en el desarrollo de las dos aplicaciones Android de los teléfonos

    Rotorcraft Blade Pitch Control Through Torque Modulation

    Get PDF
    Micro air vehicle (MAV) technology has broken with simple mimicry of manned aircraft in order to fulfill emerging roles which demand low-cost reliability in the hands of novice users, safe operation in confined spaces, contact and manipulation of the environment, or merging vertical flight and forward flight capabilities. These specialized needs have motivated a surge of new specialized aircraft, but the majority of these design variations remain constrained by the same fundamental technologies underpinning their thrust and control. This dissertation solves the problem of simultaneously governing MAV thrust, roll, and pitch using only a single rotor and single motor. Such an actuator enables new cheap, robust, and light weight aircraft by eliminating the need for the complex ancillary controls of a conventional helicopter swashplate or the distributed propeller array of a quadrotor. An analytic model explains how cyclic blade pitch variations in a special passively articulated rotor may be obtained by modulating the main drive motor torque in phase with the rotor rotation. Experiments with rotors from 10 cm to 100 cm in diameter confirm the predicted blade lag, pitch, and flap motions. We show the operating principle scales similarly as traditional helicopter rotor technologies, but is subject to additional new dynamics and technology considerations. Using this new rotor, experimental aircraft from 29 g to 870 g demonstrate conventional flight capabilities without requiring more than two motors for actuation. In addition, we emulate the unusual capabilities of a fully actuated MAV over six degrees of freedom using only the thrust vectoring qualities of two teetering rotors. Such independent control over forces and moments has been previously obtained by holonomic or omnidirection multirotors with at least six motors, but we now demonstrate similar abilities using only two. Expressive control from a single actuator enables new categories of MAV, illustrated by experiments with a single actuator aircraft with spatial control and a vertical takeoff and landing airplane whose flight authority is derived entirely from two rotors

    Diseño y Construcción de un Helicóptero Coaxial

    Full text link
    Este proyecto sienta las bases para el desarrollo de un helicóptero coaxial autónomo. Este helicóptero consta de dos hélices montadas sobre un mismo eje y con sentidos de rotación opuestos. Para manejar el helicóptero, este trabajo propone un mecanismo capaz de desplazar el centro de gravedad del helicóptero. El control se realizará mediante los sensores de un teléfono móvil montado en el helicóptero. Este teléfono proporcionará además diferentes recursos para poder desarrollar futuras aplicaciones. Una aplicación ejecutada en un segundo teléfono móvil permitirá enviar las órdenes para maniobrar el helicóptero. El proyecto está dividido en dos mitades presentándose en el presente Trabajo Fin de Grado el diseño y la construcción del helicóptero. La segunda parte de este proyecto, referente al desarrollo de las aplicaciones para los dos teléfonos móviles, es abordada por Nicolás Parra Sánchez

    飛行ロボットにおける人間・ロボットインタラクションの実現に向けて : ユーザー同伴モデルとセンシングインターフェース

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 矢入 健久, 東京大学教授 堀 浩一, 東京大学教授 岩崎 晃, 東京大学教授 土屋 武司, 東京理科大学教授 溝口 博University of Tokyo(東京大学

    EXPERIMENTAL AND COUPLED CFD/CSD INVESTIGATION OF FLEXIBLE MAV-SCALE FLAPPING WINGS IN HOVER

    Get PDF
    Due to their potential to expand our sensing and mission capabilities in both military and civilian applications, micro air vehicles (MAVs) have recently gained increased recognition. However, man-made MAVs have struggled to meet the aerodynamic performance and maneuvering capabilities of biological flapping wing flyers (small birds and insects) which operate at MAV-scales (Reynolds numbers on the order of 103–104). Several past studies have focused on developing and analyzing flapping-wing MAV designs due to the possibility of achieving the increased lift, performance and flight capabilities seen in biological flapping wing flyers. However, there are still a lack of baseline design principles to follow when constructing a flexible flapping wing for a given set of wing kinematics, target lift values, mission capabilities, etc. This is due to the limited understanding of the complex, unsteady flow and aeroelastic effects intrinsic to flexible flapping wings. In the current research, a computational fluid dynamics (CFD) solver was coupled with a computational structural dynamics (CSD) solver to simulate the aerodynamics and inherent aeroelastic effects of a flexible flapping wing in hover. The coupled aeroelastic solver was validated against experimental test data to assess the predictive capability of the coupled solver. The predicted and experimental results showed good correlation over several different test cases. Experimental tests included particle image velocimetry (PIV) measurements, instantaneous aerodynamic force measurements and dynamic wing deformation recordings via a motion capture system. The aeroelastic solver was able to adequately predict the process of leading edge vortex (LEV) formation and shedding observed during experimentation. Additionally, the instantaneous lift and drag force-time histories as well as passive wing deformations agreed satisfactorily with the experimental measurements. The coupled CFD/CSD solver was used to determine how varied wing structural compliance influences aerodynamic force production, temporal and spatial evolution of the flowfield and overall wing performance. Results showed that for the wings tested, decreasing wing stiffness, especially toward the wing root, increased the time-averaged aerodynamic lift with minimal effect on drag. This is primarily due to prolonged sustainment of the LEVs produced during flapping and suggests that aeroelastic tailoring of flapping wings could improve performance
    corecore