342 research outputs found

    Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions

    Full text link
    Designing soft robots poses considerable challenges: automated design approaches may be particularly appealing in this field, as they promise to optimize complex multi-material machines with very little or no human intervention. Evolutionary soft robotics is concerned with the application of optimization algorithms inspired by natural evolution in order to let soft robots (both morphologies and controllers) spontaneously evolve within physically-realistic simulated environments, figuring out how to satisfy a set of objectives defined by human designers. In this paper a powerful evolutionary system is put in place in order to perform a broad investigation on the free-form evolution of walking and swimming soft robots in different environments. Three sets of experiments are reported, tackling different aspects of the evolution of soft locomotion. The first two sets explore the effects of different material properties on the evolution of terrestrial and aquatic soft locomotion: particularly, we show how different materials lead to the evolution of different morphologies, behaviors, and energy-performance tradeoffs. It is found that within our simplified physics world stiffer robots evolve more sophisticated and effective gaits and morphologies on land, while softer ones tend to perform better in water. The third set of experiments starts investigating the effect and potential benefits of major environmental transitions (land - water) during evolution. Results provide interesting morphological exaptation phenomena, and point out a potential asymmetry between land-water and water-land transitions: while the first type of transition appears to be detrimental, the second one seems to have some beneficial effects.Comment: 37 pages, 22 figures, currently under review (journal

    Scalable Co-Optimization of Morphology and Control in Embodied Machines

    Full text link
    Evolution sculpts both the body plans and nervous systems of agents together over time. In contrast, in AI and robotics, a robot's body plan is usually designed by hand, and control policies are then optimized for that fixed design. The task of simultaneously co-optimizing the morphology and controller of an embodied robot has remained a challenge. In psychology, the theory of embodied cognition posits that behavior arises from a close coupling between body plan and sensorimotor control, which suggests why co-optimizing these two subsystems is so difficult: most evolutionary changes to morphology tend to adversely impact sensorimotor control, leading to an overall decrease in behavioral performance. Here, we further examine this hypothesis and demonstrate a technique for "morphological innovation protection", which temporarily reduces selection pressure on recently morphologically-changed individuals, thus enabling evolution some time to "readapt" to the new morphology with subsequent control policy mutations. We show the potential for this method to avoid local optima and converge to similar highly fit morphologies across widely varying initial conditions, while sustaining fitness improvements further into optimization. While this technique is admittedly only the first of many steps that must be taken to achieve scalable optimization of embodied machines, we hope that theoretical insight into the cause of evolutionary stagnation in current methods will help to enable the automation of robot design and behavioral training -- while simultaneously providing a testbed to investigate the theory of embodied cognition

    The First Hominins and the Origins of Bipedalism

    Get PDF

    OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion

    Full text link
    Muscle-actuated control is a research topic that spans multiple domains, including biomechanics, neuroscience, reinforcement learning, robotics, and graphics. This type of control is particularly challenging as bodies are often overactuated and dynamics are delayed and non-linear. It is however a very well tested and tuned actuation mechanism that has undergone millions of years of evolution with interesting properties exploiting passive forces and efficient energy storage of muscle-tendon units. To facilitate research on muscle-actuated simulation, we release a 3D musculoskeletal simulation of an ostrich based on the MuJoCo physics engine. The ostrich is one of the fastest bipeds on earth and therefore makes an excellent model for studying muscle-actuated bipedal locomotion. The model is based on CT scans and dissections used to collect actual muscle data, such as insertion sites, lengths, and pennation angles. Along with this model, we also provide a set of reinforcement learning tasks, including reference motion tracking, running, and neck control, used to infer muscle actuation patterns. The reference motion data is based on motion capture clips of various behaviors that we preprocessed and adapted to our model. This paper describes how the model was built and iteratively improved using the tasks. We also evaluate the accuracy of the muscle actuation patterns by comparing them to experimentally collected electromyographic data from locomoting birds. The results demonstrate the need for rich reward signals or regularization techniques to constrain muscle excitations and produce realistic movements. Overall, we believe that this work can provide a useful bridge between fields of research interested in muscle actuation.Comment: https://github.com/vittorione94/ostrichr
    corecore