1,510 research outputs found

    Production planning and control of closed-loop supply chains

    Get PDF
    More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies.We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future.closed-loop supply chains;Production planning and control

    The boomerang returns? Accounting for the impact of uncertainties on the dynamics of remanufacturing systems

    Get PDF
    Recent years have witnessed companies abandon traditional open-loop supply chain structures in favour of closed-loop variants, in a bid to mitigate environmental impacts and exploit economic opportunities. Central to the closed-loop paradigm is remanufacturing: the restoration of used products to useful life. While this operational model has huge potential to extend product life-cycles, the collection and recovery processes diminish the effectiveness of existing control mechanisms for open-loop systems. We systematically review the literature in the field of closed-loop supply chain dynamics, which explores the time-varying interactions of material and information flows in the different elements of remanufacturing supply chains. We supplement this with further reviews of what we call the three ‘pillars’ of such systems, i.e. forecasting, collection, and inventory and production control. This provides us with an interdisciplinary lens to investigate how a ‘boomerang’ effect (i.e. sale, consumption, and return processes) impacts on the behaviour of the closed-loop system and to understand how it can be controlled. To facilitate this, we contrast closed-loop supply chain dynamics research to the well-developed research in each pillar; explore how different disciplines have accommodated the supply, process, demand, and control uncertainties; and provide insights for future research on the dynamics of remanufacturing systems

    Sustainable supply chains: an integrated modeling approach under uncertainty

    Get PDF
    The authors acknowledge Fundacao para a Ciencia e a Tecnologia (FCT) for projects PTDC/EMS-SIS/1982/2012, MITPTB/PFM/0005/2013, UID/MAT/00297/2013, and grants SFRH/BD/51947/2012 and SFRH/BSAB/128453/2017.This work presents ToBLoOM – Triple Bottom Line Optimization Modeling, a decision support tool for the design and planning of sustainable supply chains. It consists of a multi-objective mixed integer linear programming model which integrates several interconnected decisions: facility location and capacity determination; supplier selection and purchase levels definition; technology selection and allocation; transportation network definition including both unimodal and intermodal options; supply planning; product recovery and remanufacturing. The three pillars of sustainability are addressed as objective functions: economic, through Net Present Value; environmental through the Life Cycle Analysis methodology ReCiPe; and social through a developed GDP-based metric. Uncertainty is considered using a stochastic ToBloOM. This applied to a case of a European based company with markets in Europe and South America. This work contributes to the literature by building on several identified research gaps such as the need for an integrated approach that allows simultaneous assessment of different interacting supply chain decisions, the need to explicitly assess the environmental impact in closed-loop supply chains, the need to assess the impact of supply chains on society, and the need for a multi-objective tool that includes all the three pillars of sustainability. Strategies towards a more sustainable supply chain are also derived from this work.authorsversionpublishe

    Production planning and control of closed-loop supply chains

    Get PDF
    More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies. We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future

    Design Principles for Closed Loop Supply Chains

    Get PDF
    In this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the literature. It appears that setting up closed loop supply chains requires some additional design principles because of sustainability requirements. At the same time however, we see that traditional principles also apply. Subsequently we look at a business situation at Honeywell. Here, only a subset of the relevant design principles is applied. The apparent low status of reverse logistics may provide an explanation for this. To some extent, the same mistakes are made again as were 20 years ago in, for instance, inbound logistics. Thus, obvious improvements can be made by applying traditional principles. Also new principles, which require a life cycle driven approach, need to be applied. This can be supported by advanced management tools such as LCA and LCC.reverse logistics;case-study;closed loop supply chains

    Internal Supply-chain Competition In Remanufacturing: Operations Strategies, Performance And Environmental Effects

    Get PDF
    This paper investigates the competitive and environmental effects of different operations strategies of original equipment manufacturers (OEMs) and semi-independent remanufacturers, which simultaneously cooperate and compete in different stages of a closed-loop supply chain. In particular, a co-opetitive situation, in which remanufacturing is undertaken only by retailers while the OEMs' role is restricted to recycling is considered. After adopting a resource-based perspective of competition, investigations are accomplished using system dynamics simulation modelling. The results of simulations indicate that, in the long run, OEMs, regardless of the operation strategy they adopt, are unable to (re)capture the market gained by the remanufacturers. However, some of these strategies contribute to the improvement of the environmental performance of the entire supply chain

    Design of Closed Loop Supply Chains

    Get PDF
    Increased concern for the environment has lead to new techniques to design products and supply chains that are both economically and ecologically feasible. This paper deals with the product - and corresponding supply chain design for a refrigerator. Literature study shows that there are many models to support product design and logistics separately, but not in an integrated way. In our research we develop quantitative modelling to support an optimal design structure of a product, i.e. modularity, repairability, recyclability, as well as the optimal locations and goods flows allocation in the logistics system. Environmental impacts are measured by energy and waste. Economic costs are modelled as linear functions of volumes with a fixed set-up component for facilities. We apply this model using real life R&D data of a Japanese consumer electronics company. The model is run for different scenarios using different parameter settings such as centralised versus decentralised logistics, alternative product designs, varying return quality and quantity, and potential environmental legislation based on producer responsibility.supply chain management;reverse logistics;facility location;network design;product design

    Uncertainty Models in Reverse Supply Chain: A Review

    Get PDF
    Reverse logistic has become an important topic for the organization due to growing environmental concern, government regulation, economic value, and sustainable competitiveness. Uncertainty is one of the key factors in the reverse supply chain that must be controlled; thus, the company could optimize the reverse supply chain function. This paper discusses progress in reverse logistic research. A total of 72 published articles were selected, analyzed, categorized and the research gaps were found among them. The study began by analyzed previous research articles in reverse logistic. In this stage, we also collected and reviewed journals discussing about the reverse supply chain. Meanwhile, the result of this stage shows that uncertainty factor has not been reviewed in detail. The most common theme as the background research in reverse logistic is environmental and economic aspect. Uncertainty in Close Loop Supply Chain is the most widely used approach, followed by the usage on reverse logistics, reverse supply chain and reverse Model. The most used approach and method on uncertainty are Mixed Integer Linear Programing, mixed integer nonlinear Programing, Robust Fuzzy Stochastic Programming, and Improved kriging-assisted robust optimization method. Customer demand, total cost, product returns are the most widely researched aspects. This paper may be useful for academicians, researchers and practitioners in learning on reverse logistic and reverse supply chain; therefore, close loop supply chain can be guidance for upcoming researches. Research opportunity based on this research combines total cost, quality return product, truck capacity, delivery route, remanufacturing capacity, and facility location got optimum function in uncertainty. The research method and approach for MINLP, IK-MRO and RSFP provide many opportunities for research. For theme and area in reverse logistic, close loop supply chain is the theme that provides the most research opportunities
    • 

    corecore