6,184 research outputs found

    GaGa: A parsimonious and flexible model for differential expression analysis

    Full text link
    Hierarchical models are a powerful tool for high-throughput data with a small to moderate number of replicates, as they allow sharing information across units of information, for example, genes. We propose two such models and show its increased sensitivity in microarray differential expression applications. We build on the gamma--gamma hierarchical model introduced by Kendziorski et al. [Statist. Med. 22 (2003) 3899--3914] and Newton et al. [Biostatistics 5 (2004) 155--176], by addressing important limitations that may have hampered its performance and its more widespread use. The models parsimoniously describe the expression of thousands of genes with a small number of hyper-parameters. This makes them easy to interpret and analytically tractable. The first model is a simple extension that improves the fit substantially with almost no increase in complexity. We propose a second extension that uses a mixture of gamma distributions to further improve the fit, at the expense of increased computational burden. We derive several approximations that significantly reduce the computational cost. We find that our models outperform the original formulation of the model, as well as some other popular methods for differential expression analysis. The improved performance is specially noticeable for the small sample sizes commonly encountered in high-throughput experiments. Our methods are implemented in the freely available Bioconductor gaga package.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS244 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Deep generative modeling for single-cell transcriptomics.

    Get PDF
    Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task

    Gamma-based clustering via ordered means with application to gene-expression analysis

    Full text link
    Discrete mixture models provide a well-known basis for effective clustering algorithms, although technical challenges have limited their scope. In the context of gene-expression data analysis, a model is presented that mixes over a finite catalog of structures, each one representing equality and inequality constraints among latent expected values. Computations depend on the probability that independent gamma-distributed variables attain each of their possible orderings. Each ordering event is equivalent to an event in independent negative-binomial random variables, and this finding guides a dynamic-programming calculation. The structuring of mixture-model components according to constraints among latent means leads to strict concavity of the mixture log likelihood. In addition to its beneficial numerical properties, the clustering method shows promising results in an empirical study.Comment: Published in at http://dx.doi.org/10.1214/10-AOS805 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore