4 research outputs found

    Flexible distribution of complexity by hybrid predictive-distributed video coding

    Get PDF
    There is currently limited flexibility for distributing complexity in a video coding system. While rate-distortion-complexity (RDC) optimization techniques have been proposed for conventional predictive video coding with encoder-side motion estimation, they fail to offer true flexible distribution of complexity between encoder and decoder since the encoder is assumed to have always more computational resources available than the decoder. On the other hand, distributed video coding solutions with decoder-side motion estimation have been proposed, but hardly any RDC optimized systems have been developed. To offer more flexibility for video applications involving multi-tasking or battery-constrained devices, in this paper, we propose a codec combining predictive video coding concepts and techniques from distributed video coding and show the flexibility of this method in distributing complexity. We propose several modes to code frames, and provide complexity analysis illustrating encoder and decoder computational complexity for each mode. Rate distortion results for each mode indicate that the coding efficiency is similar. We describe a method to choose which mode to use for coding each inter frame, taking into account encoder and decoder complexity constraints, and illustrate how complexity is distributed more flexibly

    Distributed video coding with feedback channel constraints

    Get PDF
    Many of the distributed video coding (DVC) systems described in the literature make use of a feedback channel from the decoder to the encoder to determine the rate. However, the number of requests through the feedback channel is often high, and as a result the overall delay of the system could be unacceptable in practical applications. As a solution, feedback-free DVC systems have been proposed, but the problem with these solutions is that they incorporate a difficult trade-off between encoder complexity and compression performance. Recognizing that a limited form of feedback may be supported in many video-streaming scenarios, in this paper we propose a method for constraining the number of feedback requests to a fixed maximum number of N requests for an entire Wyner-Ziv (WZ) frame. The proposed technique estimates the WZ rate at the decoder using information obtained from previously decoded WZ frames and defines the N requests by minimizing the expected rate overhead. Tests on eight sequences show that the rate penalty is less than 5% when only five requests are allowed per WZ frame (for a group of pictures of size four). Furthermore, due to improvements from previous work, the system is able to perform better than or similar to DISCOVER even when up to two requests per WZ frame are allowed. The practical usefulness of the proposed approach is studied by estimating end-to-end delay and encoder buffer requirements, indicating that DVC with constrained feedback can be an important solution in the context of video-streaming scenarios

    Improved compression performance for distributed video coding

    Get PDF
    corecore