3,990 research outputs found

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    An improved algorithm of generating shortening patterns for polar codes

    Get PDF
    The rate matching in polar codes becomes a solution when non-conventional codewords of length N≠2n are required. Shortening is employed to design arbitrary rate codes from a mother code with a given rate. Based on the conventional shortening scheme, length of constructed polar codes is limited. In this paper, we demonstrate the presence of favorable and unfavorable shortening patterns. The structure of polar codes is leveraged to eliminate unfavorable shortening patterns, thereby reducing the search space. We generate an auxiliary matrix through likelihood and subsequently select the shortening bits from the matrix. Unlike different existing methods that offer only a single shortening pattern, our algorithm generates multiple favorable shortening patterns, encompassing all possible favorable configurations. This algorithm has a reduced complexity and suboptimal performance, effectively identifying shortening patterns and sets of frozen symbols for any polar code. Simulation results underscore that the shortened polar codes exhibit performance closely aligned with the mother codes. Our algorithm addresses this security concern by making it more difficult for an attacker to obtain the information set and frozen symbols of a polar code. This is done by generating multiple shortening patterns for any polar code

    Polar coding for optical wireless communication

    Get PDF

    Polar coding for optical wireless communication

    Get PDF
    corecore