942 research outputs found

    A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures

    Full text link
    Scientific problems that depend on processing large amounts of data require overcoming challenges in multiple areas: managing large-scale data distribution, co-placement and scheduling of data with compute resources, and storing and transferring large volumes of data. We analyze the ecosystems of the two prominent paradigms for data-intensive applications, hereafter referred to as the high-performance computing and the Apache-Hadoop paradigm. We propose a basis, common terminology and functional factors upon which to analyze the two approaches of both paradigms. We discuss the concept of "Big Data Ogres" and their facets as means of understanding and characterizing the most common application workloads found across the two paradigms. We then discuss the salient features of the two paradigms, and compare and contrast the two approaches. Specifically, we examine common implementation/approaches of these paradigms, shed light upon the reasons for their current "architecture" and discuss some typical workloads that utilize them. In spite of the significant software distinctions, we believe there is architectural similarity. We discuss the potential integration of different implementations, across the different levels and components. Our comparison progresses from a fully qualitative examination of the two paradigms, to a semi-quantitative methodology. We use a simple and broadly used Ogre (K-means clustering), characterize its performance on a range of representative platforms, covering several implementations from both paradigms. Our experiments provide an insight into the relative strengths of the two paradigms. We propose that the set of Ogres will serve as a benchmark to evaluate the two paradigms along different dimensions.Comment: 8 pages, 2 figure

    Data analytics in the cloud with flexible MapReduced workflows

    Get PDF
    Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances

    Processing Data-Intensive Workflows in the Cloud

    Get PDF
    In the recent years, large-scale data analysis has become critical to the success of modern enterprise. Meanwhile, with the emergence of cloud computing, companies are attracted to move their data analytics tasks to the cloud due to its exible, on demand resources usage and pay-as-you-go pricing model. MapReduce has been widely recognized as an important tool for performing large-scale data analysis in the cloud. It provides a simple and fault-tolerance framework for users to process data-intensive analytics tasks in parallel across dierent physical machines. In this report, we survey alternative implementations of MapReduce, contrasting batched-oriented and pipelined execution models and study how these models impact response times, completion time and robustness. Next, we present three optimization strategies for MapReduce-style work- ows, including (1) scan sharing across MapReduce programs, (2) work- ow optimizations aimed at reducing intermediate data, and (3) schedul- ing policies that map work ow tasks to dierent machines in order to minimize completion times and monetary costs. We conclude with a brief comparison across these optimization strate- gies, and discuss their pros/cons as well as performance implications of using more than one optimization strategy at a time.University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-12-07

    Toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

    Get PDF
    Convergence between high-performance computing (HPC) and big data analytics (BDA) is currently an established research area that has spawned new opportunities for unifying the platform layer and data abstractions in these ecosystems. This work presents an architectural model that enables the interoperability of established BDA and HPC execution models, reflecting the key design features that interest both the HPC and BDA communities, and including an abstract data collection and operational model that generates a unified interface for hybrid applications. This architecture can be implemented in different ways depending on the process- and data-centric platforms of choice and the mechanisms put in place to effectively meet the requirements of the architecture. The Spark-DIY platform is introduced in the paper as a prototype implementation of the architecture proposed. It preserves the interfaces and execution environment of the popular BDA platform Apache Spark, making it compatible with any Spark-based application and tool, while providing efficient communication and kernel execution via DIY, a powerful communication pattern library built on top of MPI. Later, Spark-DIY is analyzed in terms of performance by building a representative use case from the hydrogeology domain, EnKF-HGS. This application is a clear example of how current HPC simulations are evolving toward hybrid HPC-BDA applications, integrating HPC simulations within a BDA environment.This work was supported in part by the Spanish Ministry of Economy, Industry and Competitiveness under Grant TIN2016-79637-P(toward Unification of HPC and Big Data Paradigms), in part by the Spanish Ministry of Education under Grant FPU15/00422 TrainingProgram for Academic and Teaching Staff Grant, in part by the Advanced Scientific Computing Research, Office of Science, U.S.Department of Energy, under Contract DE-AC02-06CH11357, and in part by the DOE with under Agreement DE-DC000122495,Program Manager Laura Biven
    • …
    corecore