
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

1-1-2012 

Processing Data-Intensive Workflows in the Cloud Processing Data-Intensive Workflows in the Cloud 

Zhuoyao Zhang 
University of Pennsylvania, zhuoyao@seas.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Zhuoyao Zhang, "Processing Data-Intensive Workflows in the Cloud", . January 2012. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-12-08. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/970 
For more information, please contact repository@pobox.upenn.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/970
mailto:repository@pobox.upenn.edu


Processing Data-Intensive Workflows in the Cloud Processing Data-Intensive Workflows in the Cloud 

Abstract Abstract 
In the recent years, large-scale data analysis has become critical to the success of modern enterprise. 
Meanwhile, with the emergence of cloud computing, companies are attracted to move their data analytics 
tasks to the cloud due to its exible, on demand resources usage and pay-as-you-go pricing model. 
MapReduce has been widely recognized as an important tool for performing large-scale data analysis in 
the cloud. It provides a simple and fault-tolerance framework for users to process data-intensive analytics 
tasks in parallel across dierent physical machines. In this report, we survey alternative implementations of 
MapReduce, contrasting batched-oriented and pipelined execution models and study how these models 
impact response times, completion time and robustness. Next, we present three optimization strategies 
for MapReduce-style work- ows, including (1) scan sharing across MapReduce programs, (2) work- ow 
optimizations aimed at reducing intermediate data, and (3) schedul- ing policies that map work ow tasks 
to dierent machines in order to minimize completion times and monetary costs. We conclude with a brief 
comparison across these optimization strate- gies, and discuss their pros/cons as well as performance 
implications of using more than one optimization strategy at a time.University of Pennsylvania 
Department of Computer and Information Science Technical Report No. MS-CIS-12-07. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-12-08. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/970 

https://repository.upenn.edu/cis_reports/970


Processing Data-intensive Workflows in

the Cloud

WPE-II Written Report

Zhuoyao Zhang

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104
zhuoyao@seas.upenn.edu

April 19, 2012

Abstract

In the recent years, large-scale data analysis has become critical to the
success of modern enterprise. Meanwhile, with the emergence of cloud
computing, companies are attracted to move their data analytics tasks to
the cloud due to its flexible, on demand resources usage and pay-as-you-go
pricing model. MapReduce has been widely recognized as an important
tool for performing large-scale data analysis in the cloud. It provides a
simple and fault-tolerance framework for users to process data-intensive
analytics tasks in parallel across different physical machines.

In this report, we survey alternative implementations of MapReduce,
contrasting batched-oriented and pipelined execution models and study
how these models impact response times, completion time and robustness.
Next, we present three optimization strategies for MapReduce-style work-
flows, including (1) scan sharing across MapReduce programs, (2) work-
flow optimizations aimed at reducing intermediate data, and (3) schedul-
ing policies that map workflow tasks to different machines in order to
minimize completion times and monetary costs.

We conclude with a brief comparison across these optimization strate-
gies, and discuss their pros/cons as well as performance implications of
using more than one optimization strategy at a time.

1



Contents

1 Introduction 3

2 Problem Statement 4
2.1 Overview of Data Processing Workflow on The Cloud . . . . . . 4
2.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Factors Affecting Performance Metrics . . . . . . . . . . . . . . . 5

3 MapReduce: Workflow Processing Framework on the Cloud 6
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Batch Oriented Data Analytics Processing . . . . . . . . . . . . . 8

3.2.1 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Continuous Data Analytics Processing . . . . . . . . . . . . . . . 9

3.3.1 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Optimization for Workflow Specification 11
4.1 Optimization to Reduce The Initial Scan Costs . . . . . . . . . . 11

4.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Optimization algorithm . . . . . . . . . . . . . . . . . . . 12
4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Optimization to Reduce Intermediate Data . . . . . . . . . . . . 13
4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Reducing the data operators within a workflow . . . . . . 14
4.2.3 Reducing the intermediate data generated . . . . . . . . . 16
4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 I/O based cost model . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Estimate the cost saving with scan sharing . . . . . . . . 18
4.3.2 Estimate the cost saving with replicated join . . . . . . . 19

5 Optimization for Workflow Execution 20
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Optimizing Mapping Between Operators and Instances . . . . . . 21
5.3 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 Completion time modeling . . . . . . . . . . . . . . . . . . 22
5.3.2 Monetary cost modeling . . . . . . . . . . . . . . . . . . . 23

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Summary and Discussion 24

7 Acknowledgments 25

2



1 Introduction

In the recent years, data-intensive analytic applications have become core to
the functions of modern enterprise. Large companies like Google, facebook, and
LinkedIn are processing and analyzing large amount data everyday. These data
analytic tasks range from business intelligent analytics to social network con-
nection analysis, to more advanced scientific data analysis and machine learning
applications and the amount of data produced daily is exploding. For example,
the data processed by Facebook everyday grows from 5-6TB to 10-15TB in 6
months [4].

Meanwhile, with the advance of cloud computing, companies are attracted
to move their data analytics tasks to the cloud platform due to its large amount
of resources which can be required and returned on demand and its flexible
pay-as-you-go pricing model. Nowadays, there are several large companies pro-
viding cloud infrastructure services including Google, Amazon and Microsoft.
Hundreds of companies are using these cloud infrastructures to provide service
and perform data analytic tasks like Dropbox, IMDB, Yelp etc., with more and
more companies moving towards it.

In such background, MapReduce has been widely recognized as an important
tool for large-scale data analysis in the context of cloud computing. It provides
a simple and fault-tolerance framework for users to process data-intensive ana-
lytic tasks with the distributed resources in the cloud. There are also platforms
based on MapReduce such as Pig [7] and Hive [16] which provide even high-
level abstraction on top of the MapReduce engines, so that user can specify
complex data-analysis tasks easily with declarative SQL-like language such as
Pig-Latin [14] and Hive-SQL. The underlying runtime will compile the user-
specified declarative programs into MapReduce workflows (represented as a di-
rected acyclic graph (DAG)) which will then be launched in the clouds.

Providing good performance for processing data analytic workflows is an
important issue for these MapReduce based platforms, and the system perfor-
mance could directly map to the monetary cost in the cloud environment since
the cloud resources are charged based on a pay-as-you-go mode. However, the
existing MapReduce based data processing frameworks fall short of efficient
performance optimization strategies. Until now, optimizations are usually per-
formed manually by users which is difficult and inefficient.

To address this problem, there are great amount of works focusing on the
performance optimization for processing workflows on MapReduce based frame-
work in the cloud. These works can be generally classified into two categories.
The first category includes optimizations for workflow specification, e.g. opti-
mizing the execution plan of different operators within a workflow to minimize
the potential I/O costs. The second category include optimizations for workflow
execution, e.g. determining the mapping between operators and the physical
machines when launching the workflow in the cloud.

In this report, we will first present alternative implementations for the
MapReduce framework, contrasting batched-oriented and pipelined execution
models and study how these models impact response times, completion time
and robustness. Next, we present three optimization strategies for MapReduce-
style workflows, including (1) scan sharing across MapReduce programs, (2)
workflow optimizations aimed at reducing intermediate data, and (3) schedul-
ing policies that map workflow tasks to different machines in order to minimize

3



completion times and monetary costs. Besides the ones described in this report,
there are also other optimization strategies such as more efficient operator im-
plementation [10], better workload balancing for parallel data processing [13],
intermediate data storage optimization [11] scheduling policy to handle strag-
glers [20], incremental computation [3] and system configuration turnings [8]).
The goal of this report is not to describe all the possible optimization strategies
but to show potential optimization opportunities in processing data analytic
workflows in the cloud.

The rest of this report is organized as follows. We start with a detail problem
statement in section 2 by defining the performance metrics and identifying the
factors affecting these metrics. Section 3 introduces the MapReduce architecture
with two alternative implementations. We describe scan sharing techniques
in section 4.1, workflow optimization in section 4.2 and scheduling policy in
section 5. Finally, section 6 reviews all the strategies and discuss the challenges.

2 Problem Statement

To scope our survey paper, we begin first with a problem statement that
provides a concise definition of the performance metrics we will focus for data-
intensive workflows in the cloud and the factors that affect these metrics.

2.1 Overview of Data Processing Workflow on The Cloud

The data processing workflow is often used to represent the execution of
complex data-intensive analytics. It typically consists of a sequence of inter
dependent data processing operators e.g. data loading, information filtering,
data transformation & analysis and other user-defined data manipulation. Such
workflow can be represented as a directed acyclic graphs (DAG) where the oper-
ators are represented as nodes and the data dependency between the operators
are represented as edges in the graph. The left part in Figure 1 gives an exam-
ple of such DAG, where the cylinder represent the input/output data and the
circles represent the operators. There could be hierarchical structure of the data
operators as well, for example, in a MapReduce based workflow, each operator
represents a MapReduce job, while each job could contain a number map and
reduce tasks.

To execute the workflow, the system will assign each data operator to a
physical computing node as shown in the right part in Figure 1. In the cloud
environment, the computing resource is provided as an instance that capsulates
a fixed amount of resource including the CPU capability, the memory and disk
storage and the network bandwidth. Different kind of instances contains differ-
ent amount of resources. For example, the Amazon EC2 provides 12 different
instances from micro instance with the minimal capacity to the extreme large
instance with the most powerful capability. Cloud users can claim and return
these instances on demand and will be charged for the use of the instance based
on a per quantum pricing scheme, e.g, 1 hour. The unit pricing for each instance
depends on its resource capacity. Take EC2 for example, the pricing ranges from
$0.03 per hour for micro instance to $2.5 for extreme large instance.

4



Specification Execution 

Figure 1: Example of Data Processing Workflow

2.2 Performance Metrics

Depending on the requirements of different applications, there are different
performance metrics in optimizing the MapReduce framework such as comple-
tion time, monetary costs, throughputs, responsibility, accuracy, throughputs,
reliability, fairness etc. There are tradeoffs between these metrics. For example,
interactive applications prefer quick response and can sacrifice accuracy to some
extend, batch applications are not very time sensitive and would like to mini-
mize the monetary cost as long as it can finish within certain time period. In
this report, we are particularly interested in the following performance metrics.

• Completion time: Completion time is the time elapses from the start of
the workflows to the time when all the results are generated. It is the most
important cost metric that represents the total time it takes to complete
a workflow.

• Monetary cost: The monetary cost to complete the entire workflow
based on cloud platforms (e.g, Amazon EC2) is also an important metric
as the resources are claimed on demand and will be charged as long as
you are using it. The monetary cost is closely related to the completion
time. However, they not always correlated due to the pricing scheme in
the cloud.

• Response time: Response time here represents the time elapses from the
start of the workflows to the time when the system response. It is different
from completion time as the response may contain only partial results.
Short response time is especially important for interactive applications
since the clients prefer short response time and are usually tolerant with
incomplete results.

2.3 Factors Affecting Performance Metrics

Towards the goal of optimizing the workflow processing according to the
above performance metrics, we first identify the critical factors that affect these
metrics which is listed as follows.

5



1. Initial data scan costs. It represents the time spent in loading data
before the processing. Such initial data scanning requires reading and
transferring data from the underlying distributed file system to the local
place of the processing instance and recent study [17] shows that initial
scanning could take large fraction of the total completion time.

2. Intermediate data costs. Intermediate data represents the data gener-
ated from the previous operator and will be consumed by the next operator
in the workflow. For ease of fault tolerance, most parallel dataflow pro-
gramming framework materialize these intermediate data when they are
generated and delete them after the completion of the workflow. The I/O
costs to materialize such data could significantly affect the completion
time.

3. Data transmission costs. The transmission of intermediate data be-
tween operators consists a considerable amount in the total I/O costs.
Different data transmission model (e.g. pipelined and blocked ) could also
affect the completion time.

4. Scheduling affect. The parallel execution of a data processing workflow
needs to schedule the operator to different cluster nodes. (i.e, mapping
bestween operators and the instances). Different scheduling strategies here
can be applied which will lead to different completion time or monetary
costs.

3 MapReduce: Workflow Processing Framework
on the Cloud

MapReduce [6] has been widely recognized as an important tool for large-
scale data analysis in the context of cloud computing. It is now widely used in
the industry including companies like Google, Facebook, Yahoo! The research
communities are also interested in using it for scientific related data process
including biological information analysis, scientific simulation and graph data
processing.

We will focus on MapReduce in this report because its popularity and well-
understood execution model that provide a useful starting point for further
exploration. In addition, although the optimization techniques proposed are
based on the MapReduce framework, we believe that the optimization strategies
described are general and can be applied to other workflow processing framework
such as Dryad [9].

3.1 Architecture

In the MapReduce model, computation is abstracted as two functions: map
and reduce. Once the user specified the data analysis logic as the map and
reduce functions, the underlying MapReduce execution engine will automati-
cally parallelize, distribute, and execute the work on a cluster of commodity
machines.

Figure 2 shows the architecture of the MapReduce framework. It contains
two basic stages: map and reduce stage. In the map stage, the map task reads

6



the input data ( which is typically stored in a distributed file system ) and parses
them into input key/value pairs. Then it applies the user-defined map function
on each pair to generate an intermediate set of key/value pairs. The map tasks
sort and partition these data for different reduce tasks according to a partition
function.

map 

map 

map 

reduce 

reduce 

< key, value> 

split1 

Split2 

split3 

Input  
reading Map 

Map
Sort Shuffle 

Reduce 
Merge/Sort Reduce 

Output 
writing 

<Key, list(V)> 

Figure 2: Architecture of MapReduce framework

In the reduce stage, the reduce task fetches its partition of intermediate
key/value pairs from all the map tasks (called the shuffle phase). Then it merges
these intermediate values with the same key and applies the user-defined reduce
function to the value list with the same key to produce aggregated results (called
the reduce phase). These results consists the output of the MapReduce job
which will be typically stored back to a distributed file system.

Optionally, a job could define a combiner function that aggregates the map
outputs. It takes a key and a subset of associated values and produces a single
value. The combiner function is useful when it efficiently reduces the amount
of data that need to be transferred to the reduce tasks.

The execution of a MapReduce job is controlled by the master node which
is called the JobTracker. There is one centralized JobTracker for the entire
cluster and the rest instances are workers. The workers periodically connect
to the JobTracker to report its current status and the available resources. The
JobTracker is responsible for using the reported information for scheduling task
to workers with available resources, monitoring the status of the task execution
and handling failures and speculative executions.

MapReduce Based Data Processing Framework To enable program-
mers to specify complex MapReduce based data analytics tasks in an easier
way , several projects, such as Pig [7] and Hive [16], provide high-level SQL-like
abstractions on top of MapReduce engines. These frameworks allow complex
analytics tasks to be expressed with high-level, declarative language and the
execution engine will compile the program into directed acyclic graphs (DAGs)
of MapReduce jobs.

7



The following specification shows a simple example of a Pig program. It
describes a task that operates over a table URLs that stores data with the
three attributes: (url, category, pagerank). This program identifies for
each category the url with the highest pagerank in that category.

URLs = load ’dataset’ as (url, category, pagerank);
groups = group URLs by category;
result = foreach groups generate group, max(URLs.pagerank);
store result into ’myOutput’

The example Pig program is compiled into a single MapReduce job. How-
ever, typical Pig programs are more complex, and can be compiled into an
execution plan consisting of several stages of MapReduce jobs. Figure 3 shows
a possible DAG of five MapReduce jobs {j1, j2, j3, j4, j5}, where each node rep-
resents a MapReduce job, and the edges between the nodes represent the data
dependencies between jobs.

j1 

j2 

j3 

j4 

j5 j6 

Figure 3: Example of a Pig program execution plan

3.2 Batch Oriented Data Analytics Processing

We present in this section the widely used open-source MapReduce imple-
mentation: Hadoop MapReduce [18] that contributed mostly by Yahoo! which
aims at batch data processing.

”Pull” based data transfer model The Hadoop MapReduce implementa-
tion adopts a ”Pull” based data transfer model with more details as follows.

In the map stage, each map task applies the map function to generate inter-
mediate key/value pairs. It sorts and buffers these intermediate data and spill
them into the local disk when the buffer is full. After all the input data are
processed, the map tasks perform a merge sort of all the spilled file to generate
a single final file.

In the reduce stage, the reduce tasks will fetch the intermediate data by
copying them from the corresponding local files from all the completed map
tasks. After all the data are fetched, it merges and sorts them into a single file
and applies the reduce function to the merged data to generate the final output.

3.2.1 Fault tolerance

Since the MapReduce framework is typically deployed in the cloud environ-
ment which is based on large number of commodity machines, failures become
quite common in that case. As a result, fault tolerance becomes an important
function of the MapReduce framework. With the pull based data communi-
cation model, the Hadoop MapReduce provides simple and automatic failure
recovery strategy.

8



Task failure The JobTracker receives periodical report from each worker
which contains the statue for all the tasks assigned to that worker. Once a
task failure is reported, the JobTracker simply re-executes the failed task on a
different worker. For map tasks, when the failed task re-executes and generates
new map outputs, the reduce tasks will be informed to fetch the new data from
that task. For reduce task, as all map outputs are materialized in the local disk,
the reduce task can fetch again the corresponding data from all the completed
map tasks and re-execute the reduce function on them.

Worker failure As the JobTracker receives periodical report from each work-
er, if no response is received from a worker in a certain amount of time, the Job-
Tracker marks the worker as failed. All the map tasks assigned to that worker
(including those which are already completed ) need to be re-executed since the
map outputs are stored in the local machine and is lost when the worker failed.
The JobTracker also re-executes all the incomplete reduce task on the failed
worker.

Master failure According to the design of the MapReduce framework, there
is only a single JobTracker, its failure is unlikely and no particular recovery
strategy is proposed in the Hadoop implementation. However, it is easy to
make the JobTracker write periodic checkpoints of the master data structures.
If the JobTracker dies, a new copy can be started from the last checkpointed
state.

3.3 Continuous Data Analytics Processing

In this section, we describe Hadoop Online Prototype (HOP) [5]: an alter-
native implementation of the MapReduce framework that provides directions to
support interactive and continuous applications.

”Push” based data flow model Instead of the Hadoop MapReduce which
materializes all the map outputs to the local disk before the start of reduce
phase, HOP tries to ”push” data directly from map to reduce tasks. Specifical-
ly, in the aggressive push model, when a client submits a new job, the JobTracker
assigns the map and reduce tasks associated with the job to the available Task-
Tracker slots. To simplify the discussion, we assume that there are enough free
slots to assign all the reduce tasks for each job1. Each reduce task contacts
every map task upon initiation of the job, and opens a TCP socket which will
be used to pipeline the output of the map function. When an intermediate
key/value pair is produced, the map task determines which partition (reduce
task) the pair belongs, and immediately sends it via the appropriate socket.

The problem with such data transmission model is that first it can not make
use of the combiner function which could significantly increase the amount of
data transferring between map and reduce stage. A related problem is that as
there is no sort work in the map side, it pushes more work on the reduce side
which may lead to longer reduce phase. It will also bring problems for fault

1For cases when these are not enough slots to hold all the reduce tasks, the map tasks store
the key / value data in local disk for those reduce tasked which is not scheduled and transmit
the stored data in the traditional way when they are scheduled.

9



tolerance since no intermediate data is materialized, whenever a reduce task
fails, it will bring

To address these problems, HOP proposes a refined data transmission s-
trategy. Instead of sending the output to reducers directly, it buffers the map
outputs until it grows to a threshold size. The map task then applies the com-
biner function, sorts the output and spills the buffer contents to disk. If the
reduce tasks have enough resources to process the outputs, the spill file will then
be sent to the reduce tasks. However, if the reduce tasks fall to keep up with
the production of the map tasks, the map task accumulates multiple spill files
until the reduce tasks catch up the speed. Then it merges the accumulated spill
files into a single file, applies the combiner function on it and then and sent the
combined results to the reducers.

HOP also supports data pipelining between jobs with a workflow. Similar
to the pipelining between the map and reduce stage, the reduce tasks of the
previous job can pipeline their output directly to the map tasks of the next
job, sidestepping the need for waiting for the completion of the reduce stage of
previous jobs

3.3.1 Fault tolerance

In HOP, the map outputs are sent to the reduce tasks in a pipelined fashion,
such implementation makes it more difficult to recover from failures and new
techniques need to be introduced to achieve fault tolerance.

Map task failure To recover from map task failures, the reduce tasks keep the
record which map task produces each pipelined spill file. The reducer treats the
output of a pipelined map task as ”tentative” until the map task has committed
successfully. The reducer only merge together spill files generated by the same
uncommitted mapper. Thus, if a map task fails and re-executes, each reduce
task simply ignore any tentative spill files produced by the failed map task and
starts to receive data generated by the re-executed map task.

Reduce task failure If a reduce task fails and a new copy of the task is
started, the new reduce instance must collect all the data that was sent to the
failed reduce attempt. To enable reduce failure recovery, map tasks retain their
output data on the local disk for the complete job duration. This allows the map
outputs to be resent if any reduce tasks fail. Note given such implementation,
the I/O costs of HOP is the same as the Hadoop MapReduce. However, the key
advantage of HOP is that the start of reduce tasks is not blocked waiting for
the completion of the map tasks.

3.4 Summary

In this section, we present alternative implementations of the MapReduce
framework: The Hadoop MapReduce and Hadoop Online Protocol as well as
the MapReduce based workflow processing frameworks.

Hadoop MapReduce focuses on batch oriented data processing. Its simple
map / reduce interface and the automatic parallelization and failure handling

10



makes it popular for large-scale batch data processing in the cloud environmen-
t. However, it also introduces high system overheads e.g. materialize all the
intermediate data within a workflow.

Hadoop Online Protocol implements a pipelined data transmission model
during MapReduce execution. It breaks the barrel between the map and reduce
stage and allows the system to achieve short response time by sacrificing the
accuracy (i.e, with partial results). Two typical applications which will benefit
from such architecture: 1) online aggregation that provides quick and possible
incomplete results with refined results returned later. 2) continuous MapReduce
applications which analyze continuous arriving data and return results in real-
time such as event monitoring. Besides, by pipelined data transmission, it
provides better overlapping of the map and reduce execution which increases
the system utilization.

However, such pipelined data transmission makes HOP more complex for
failure handling. For example, all the reduce tasks need to keep tracking the
source of each input key / value pair, i.e, which map task generates the data
so that when a map task fails, it can discard all the intermediate data received
from that task. In addition, though HOP can achieve much shorter response
time, it may hurt the completion time in some cases. One reason is that the I/O
costs in HOP is not reduced compared with the original Hadoop implementation
as for fault tolerance it still need to materialize all the intermediate data ( as
a background process with the pipelined data transmission). Besides, as the
pipelined data transmission pushes more sort work to the reduce side, it may
cause performance degeneration in cases when reduce task execution time is the
bottleneck.

4 Optimization for Workflow Specification

Given a MapReduce based workflow, several techniques can be applied to op-
timized the workflow specification to minimize the potential cost incurred during
the execution of the workflow. The following sections describe two representa-
tive strategies in this category. The first tries to reduce the initial scanning cost
by sharing the data scan process for jobs reading from the same input file. The
second aims to reducing the potential intermediate data generated during the
workflow execution.

4.1 Optimization to Reduce The Initial Scan Costs

During the execution of a MapReduce job, the first step is to load the input
data to the processing instances. For large scale data analytic tasks, such input
data could be of terabyte size or even larger and data loading is expensive since
it involves intensive I/O operations and network data transmission. Recent
study [17] shows that initial scanning could take 80% of the total completion
time according to the experiments based on the Pig performance benchmark
PigMix [2].

On the other hand, evidences show that there could be equivalent or similar
work within the same workflow and across different workflows. The most com-
mon case for such similar work is that different jobs may read from the same
input file. Based on these observations, [12] propose a sharing framework called

11



MRShare that aims to share similar works among different jobs to reduce the
overall completion time.

4.1.1 Overview

The general idea of scan sharing is to transform a batch of MapReduce jobs
reading from the same input file into a new batch that will be executed more
efficiently, by merging jobs into groups and transform each group into a single
job. Figure 4 shows an example of such merge transformation. where J11 and
J12 require the same input and are merged as a single job.

Input1 

Input1 J11 

J12 

J14 

J13 

J21 

J22 

J23 J24 

Input2 

Output1 

Output2 

c 

J11 

J21 

J12 

J13 

J22 

J14 

J23 

Input1 

Input2 

Output1 

Output2 

 
 
 

Figure 4: Merge workflow to reduce initial input scan

However, greedily grouping all jobs reading from the same input is not always
the optimal choice since the merged job could add extra sorting costs as more
map outputs are generated compared with each individual job. Specifically,
during the final merge sort in the map side, there will be more I/O costs as there
are more spilled files. It brings negative effect to the overall completion time
if such extra I/O costs surpass the work reduction from eliminating duplicate
input scan.

As a result, the optimization problem is formulated as follows: Given a set
of jobs J = {J1, ..., Jn} that read from the same input file, group the jobs into
S non-overlapping groups G1, G2, ..., GS , such that the total savings of the I/O
costs

∑
1≤i≤S Gain(Gi), is maximized.

4.1.2 Optimization algorithm

In [12], the authors propose a dynamic programming to solve the about
optimization problem2. The optimization algorithm is based on the observation
that if we sort all the candidate jobs into a list according to the jobs map-
output-ratios, the optimal solution will consist of consecutive jobs in the list.
Thus, the optimization problem is transferred to split the sorted list of jobs into
sublists, so that the overall savings are maximized.

2The dynamic programming is proposed to solve a relaxed version of the optimization
problem when the extra sorting overheads relies only on the job that contains the highest
map-output-ratio in a group as the original problem is proved to be NP-Complete.

12



For the transferred problem. A dynamic programming algorithm is pro-
posed. The general idea is suppose in the optimal solution, the last sublist
starts from job Ji, than the problem is reduced to find out the optimal splitting
strategy for the previous i − 1 jobs. The algorithm will search all the possible
is to find out the optimal solution. The pseudo code of the algorithm is shown
in Algorithm 1, where cl represents the total saving of the sublists.

Algorithm 1 SplitJobs

Input:
A set of N jobs sorted according to map-output-ratios J = {J1, J2, ...JN}
Output:
The maximum saving c and the corresponding grouping s

1: for 1 ≤ l ≤ N do
2: for 1 ≤ i ≤ l do
3: Compute cost saving Gain(i, l) by grouping job ji...jl
4: c(l) = max1≤i≤l{c(i− 1) +Gain(i, l)}.
5: Set s(l) as the corresponding grouping for c(l)
6: end for
7: end for

Algorithm refinement After applying Algorithm 1 to the input set of jobs
reading the same input, the return results could contain groups with single jobs.
A refinement of the algorithm is to separate these single jobs to form a new job
list and apply again Algorithm 1 on it to explore more sharing opportunities.
These process can be applied repeatedly until no more jobs can be merged.

4.1.3 Summary

The MRShare framework provides automatic scan-sharing optimization across
multiple MapReduce jobs which leads to less scan costs so as the reduced overall
completion time.

However, as the goal of MRShare is to minimize the overall I/O costs of
a set of jobs, it may sacrifice the performance for each individual jobs as the
completion time for the merged job is probably longer than executing any of the
constitute jobs individually. As a result, the system designer should be careful
when apply this technique in a multiuser environment when fairness among jobs
is an important concern.

Besides sharing the initial input scan, [12] also talks about more sharing
opportunities including sharing the map outputs and even part of the map
functions. However, the benefit analysis and cost model for such advanced
sharing is still in a preliminary stage which requires further investment.

4.2 Optimization to Reduce Intermediate Data

The intermediate data generated during a workflow represents the output of
the previous data operator which that will be consumed as the input of the next
operator. For MapReduce based data processing workflows, the intermediate
data include two parts: the intermediate date between the MapReduce jobs and

13



the intermediate data within the MapReduce job (i,e, the map outputs which
needs to be shuffled to reduce tasks). In the current MapReduce based work-
flow processing framework, the system usually materializes these intermediate
data for fault tolerance and will delete them after the completion of the entire
workflow. Such data materialization incurs considerate overheads especially for
complex workflows contain large number of jobs.

4.2.1 Overview

To reduce the intermediate data generated during the execution of a work-
flow, [19] presents an optimization framework called AQUA for MapReduce
based relational data process. The general idea of AQUA includes two parts.
The first is to reduce the data operator within a workflow by implementing each
operator with more complex functions. The second is to optimize the workflow
specification by using better execution plan to minimize the intermediate data.

4.2.2 Reducing the data operators within a workflow

To reduce the data operators within a workflow, [19] focus on the join op-
eration in relational data processing. The default join strategy in Pig and Hive
is distributed symmetric hash job3. and each join operation will be compiled
into a MapReduce job based on the default strategy. For complex data ana-
lytics tasks which require join of multiple tables, the default join strategy will
lead to e a sequence of MapReduce jobs. Figure 5 shows an example workflow
specification to join 3 tables T1, T2, T3.

T1     T2 

T1     T2     T3 

J2 

J1 

T1 

T2 

T3 

Figure 5: Workflow to join three tables

The problem with the default join strategy is that it lead to more interme-
diate data as many data operators will be generated for perforating a complex
data analytics task. To address the problem, [1] proposes a replicated join algo-
rithm which is able to process join of multiple tables with a single MapReduce
job. The general idea of replicated join is to send each intermediate key / value
pair generated by the map task to multiple reduce task so that all the input
records which can be joined together (i.e, records with the same value of the
join keys will be sent to the same reduce task ).

3Another join implementation is map side join which is applied when one of the input
size is small enough to be fully cached in memory or both input tables are co-partitioned by
the join key. In the first case, the mappers fully load the small table into memory and scan
the other table to perform in-memory hash join. In the second case, each mapper loads a
co-partition from both table and performs a local symmetric hash join.

14



We show the details of the replicated join with a simple example shown in
Figure 6 to process query T1 ./T1.k1=T2.k1

T2 ./T2.k2=T3.k2
T3. There are 2 join

attributes, k1 and k2 and suppose we have 3 map tasks and 4 reduce tasks (
2 for each join attribute ). For a tuple t of T1, we generate two <key/value>
pairs, the value is t in both pairs and the keys are < hash(t.k1)%2, 0 > and
< hash(t.k1)%2, 1 > respectively. Similarly, we also generate two pairs for
a tuple t′ of T3 with keys < 0, hash(t′.k2)%2 > and < 1, hash(t′.k2)%2 >.
However, only one pair with key ( < hash(t′′.k1), hash(t′′.k2) > ) is created for
a tuple t′′ of T2, as T2 contains both join attributes. In this way, each tuple of
T1 or T3 will be shuffled to two reduce tasks, and all reduce tasks can process
their local joins individually.

Figure 6: Replicated join of three tables

Compared to the default hash join algorithm, replicated join reduces number
of MapReduce jobs (i.e, the data operators) within a workflow which leads to
less intermediate data between the jobs. However, it incurs more shuffling costs
by forwarding a tuple to multiple reducers(i.e, more intermediate data within
a job). As a result, it is not always optimal to perform a replicated join on all
the participant tables. To address the problem, AQUA proposes an adaptive
algorithm to select the optimal join strategy for a data analytic task involving
joining of N tables which is described as follows.

Joining graph Given a data analytic task which requires to join N tables.
The joining graph is defined as a undirected graph G(V,E) where the nodes in
G represent the participating tables and the edge between the nodes represents
the joining relation between these two tables.

Covering set A possible join strategy can be represented as a covering set
of the joining graph G, which is defined as a set of disjoint sub-graph S that
satisfies 1) The nodes of G is covered by the union of of the nodes in all sub-
graphs, i.e. G.V =

⋃
∀Gi∈S Gi.V and 2) all the subgraphs are well connected.

i.e. ∀nxandny ∈ Gi, there exists path in Gi that connects nx and ny.
With the covering set on joining graph G, AQUA compiles each sub-graph

Gi into a single MapReduce job. Specifically, if |Gi.V | = 2 , it uses the default
symmetric hash join and if |Gi.V | > 2, then the replicated join is used. The
cost saving of applying replicated join is defined as

Gain(Gi) = Crjoin(Gi)− Chjoin(Gi) (1)

15



where Crjoin(Gi) denotes the cost of replicated join for Gi and Chjoin(Gi) is
the estimated costs of the best plan using symmetric hash join to process Gi

4.
AQUA tries all the possible covering set (i.e.join strategy) to find out the one

with maximal cost savings. The iteration is implemented by adaptively linking
the sub-graphs with more details in [19]. The complexity of the searching process
is 2C − 1 where C represents the number of edges in the joining graph. This
approach works as C usually is a small value.

4.2.3 Reducing the intermediate data generated

The motivation of the optimization strategy is that given a data analytics
task, we can generate different workflow specification as long as the final results
are correct. Depending on the data property (e.g data distribution), different
specification could lead to significantly different size of intermediate data. For
example, Figure 7 shows two different ways to join 4 tables S,N, T,O, in the left
one, a MapReduce job is used to perform S ./ N , and the results are written
back to underlying file system after the job is done. Then, a second job is
initiated to join the results of the first job with T . After the second job is done,
the results of S ./ N ./ T will be join with T to get the final results. While in
the right one, two MapReduce jobs will be launched for processing S ./ N and
T ./ O respectively. The results of these two jobs will both be joined together
by another MapReduce job to get the final results.

S N 

T 

O 

S N T O 

Figure 7: Different join plans

The intermediate data generated from the left plan contains S ./ N and
S ./ N ./ T . On the other hand, the intermediate data generated from the
right plan contains S ./ N and T ./ O. With certain information (e.g, join
selectivity), we can easily select a better plan from these two by comparing the
estimated size of their intermediate data.

For a data analytic workflow which contains join N tables. A possible so-
lution is to recursively compare all the possible plans to find out the one with
the minimal intermediate data. However, the searching space is extremely large

in that case ( O(N2N ), even if only the left-deep plans are considered [15] )
and the overhead to exploit all the plans is unacceptable. Therefore, a heuristic
approach is employed in AQUA to prune the search space. Specifically, AQUA
will iterate all the possible join plans, however, it adopts heuristics to identify
inefficient plans as early as possible and only estimate and compares interme-

4The best plan here means the the best execution order of these join operators which leads
to the minimal intermediate data.

16



diate data size for the plans that survive the pruning process. The pruning
heuristics are based on the following ideas.

• It prunes equivalent sub-plans. i.e, it will not consider the current plan if
there is already equivalent one contained in the candidate set.

• It prunes obvious inefficient plans. Specifically, For example, if R1 ./ R2

generates significantly more results than R2 ./ R3, it will not consider any
plans contain R1 ./ R2 operator.

4.2.4 Summary

The AQUA optimizes the workflow specification by reducing the potential
intermediate data. It first adopts the replicated join to reduce the data operators
within a workflow and second, it optimizes the workflow specification which leads
to less intermediate data between the MapReduce jobs.

However, this optimization is limited to SQL-like relational data analytic
task involving typical data operator like selection, join and aggregation. Specif-
ically, most of the optimization strategies applied only on the join operator. The
optimizer is not general enough to optimize for more general data processing
workflow on the MapReduce platform, such as sorting and word counting.

4.3 I/O based cost model

In this section, we describe the cost model used in section 4.1 and section 4.2
in determining a better workflow specification. This cost model is I/O based
assuming that the job execution time is dominated by I/O operations. Table 4.3
shows the parameters that will be used in the model.

Table 1: Parameters
Parameter Definition
Cr cost ratio to read/write data remotely
Cl cost ratio to read/write data locally
Ct cost ratio for network transmission
|Input| input size for a MapReduce job
|Output| output size for a MapReduce job
B the size of buffer used during sorting
D the size of map outputs generated by a MapReduce job

Typically, the cost of a MapReduce job contains 4 parts: costs to read the
input data Tread, costs to write the output data Twrite, costs to sort the map
outputs Tsort, and costs to transmit the intermediate data Ttrans.

T (J) = Tread(J) + Twrite(J) + Tsort(J) + Ttrans(J) (2)

For a given job j with m map tasks and r reduce tasks. Tread, Twrite and
Tsort can be estimated as follows.

Tread(J) = Cr × |Input| (3)

Twrite(J) = Cr × |Output| (4)

Ttrans(J) = Ct × |D| (5)

17



To estimate the sort cost, two parts should be considered. The first is the
sort costs for the map tasks as each map task will sort all the map outputs
before writing to its local disk. Suppose each map task generates on average
|M | size of map outputs, and each reduce task will receive on average R size of
map outputs. Note that |D| = m× |M | = r× |R| the sort costs in the map side
can be estimated approximately:

Tsort map(J) = Cl × (m× |M |(2 + 2(dlogB
|M |
B + 1

e)))

= Cl × (|D|(2 + 2(dlogB
|D|

(B + 1)×m
e)))

≈ Cl × (|D|d2(logB |D| − logBm)e) (6)

At the reduce side, each reduce task need to get the output from m map
tasks and merges and sort these m inputs. Therefore, the sort cost at the reduce
side is

Tsort reduce(J) = Cl × (r × |R|d2logBme)
= Cl × (|D|d2logBme) (7)

As a result, the total cost for the sort phase is

Tsort(J) = Tsort reduce(J) + Tsort reduce(J)

= Cl × (|D|2(dlogB |D| − logBme+ dlogBme)) (8)

4.3.1 Estimate the cost saving with scan sharing

In section 4.1.2, we describes the strategy to share the input scan for jobs
reading the same input file. Here, we give an estimation of the potential benefits
by applying the sharing strategy which is used in algorithm 1 to determine the
best sharing strategy.

Give a set of N jobs J = J1, ...JN reading from the same input file F . The
total cost to execute them individually is estimated as

T (J) = Σ1≤i≤NT (Ji) (9)

where T (Ji) is estimated based on equation 25.
On the other hand, the cost of merge these N jobs as a single job JG and

executed once is

Tread(JG) = Cr × |F |
Twrite(JG) = Cr × Σ1≤i≤N |Outputi|
Tsort(JG) = Cl × |DG| × 2(dlogB |DG| − logBme+ dlogBme))
Ttrans(JG) = Ct × |DG|

T (JG) = Tread(JG) + Twrite(JG) + TsortG(J) + Ttrans(JG)

5We assume that all the jobs has the same number of map tasks m and same number of
reduce tasks r. It is reasonable as the number of map tasks are determined by the input size
and the number of reduce tasks are specified by the user.

18



where DG represents the intermediate data generated by the merged job and is
estimated as DG = Σ1≤i≤NDi

The cost saving by sharing the same input for the set of N jobs is

Gain(J) = T (JG)− T (J) (10)

4.3.2 Estimate the cost saving with replicated join

In section 4.2.2, we describe the implementation of replicated join which
performs join of multiple tables with a single MapReduce job. Such strategy re-
duces the intermediate data but it also incurs more shuffling costs by forwarding
a tuple to multiple reducers. Here, we give an estimation of the potential ben-
efits by applying the replicated join which is used in section 4.2.3 to determine
the best join strategy.

Given a request with T1 ./T1.k1=T2.k1
T2 ./T2.k2=T3.k2

T3. With symmetric
hash join, suppose the best join plan is to first launch a MapReduce job J1 for
T1 ./T1.k1=T2.k1 T2 to get a temp result T12 and then another MapReduce job
J2 for T12 ./T12.k2=T3.k2

T3 to get the final results T123.
Suppose the size of Ti is |Ti| and the map outputs generated by Jx are |Dx|.

The total cost of the workflow is estimated as

Th = T (J1) + T (J2) (11)

where T (Ji) is estimated based on equation 2 and the input size of Ji is ap-
proximated as the total sizes of the input tables, the output size of J1 can be
estimated with the join selectivity, and the size of map outputs is approximately
equals to the input size as in the hash join, the map tasks simply emits the input
records6.

On the other hand, with replicated join, we can get the final results for
joining the three tables with a single MapReduce job Jr. The cost of Jr is
estimated as

Tread(Jr) = Cr × |T1|+ |T2|+ |T3|
Twrite(Jr) = Cr × |T1 ./ T2 ./ T3|
Tsort(Jr) = Cl × |Dr| × 2(dlogB |Dr| − logBme+ dlogBme))
Ttrans(Jr) = Ct × |Dr|

T (Jr) = Tread(Jr) + Twrite(Jr) + Tsort(Jr) + Ttrans(Jr)

where |Dr| represents the map outputs generated by Jr. Since in replicated
join, each input tuple will be sent to multiple reduce tasks. The map outputs
Dr increases. Suppose the number of reduce tasks used to process each join
attributes ai is ci. Then, each tuple from table T1 needs to be replicated to c2
reduce tasks and each tuple from table T2 needs to be replicated to c1 reduce
tasks. As a result, the map outputs for Jr is estimated as

|Dr| = |T1| × c2 + |T2| × c1 (12)

More general, Given N tables join together, the number of replicas for each
tuple from table Ti can be estimated as

ri =
∏

∀ax 6∈Ai and ax∈A

cx (13)

6For analysis simplification, we ignore the key size here.

19



where A represents the set of all join attributes and Ai represents the set of join
attributes contained in Ti. Di is then estimated as

|Di| =
N∑
i=1

|Ti| × ri (14)

The cost saving by applying replicated join is estimated as

Gain(J) = T (Jh)− T (Jr) (15)

5 Optimization for Workflow Execution

To execute a given workflow, each operator in the workflow will be mapped
to a physical instance for execution. (For MapReduce based workflow, each
MapReduce job is consists of a set of map and reduce tasks and each task will be
assigned to a physical instance for execution ). Such mapping is controlled by the
scheduling policy and different scheduling policy will greatly affect the execution
performance. As a result, the scheduling policy is critical for the workflow
execution and great attention has been paid for scheduling optimizations.

5.1 Overview

There are different goals for a particular scheduler. The completion time
and monetary cost are among the most important ones. The monetary cost is
related to the completion time. i.e, shorter complete time leads to less mone-
tary. However, they are not always correlated in the cloud environment as the
resources in the cloud are charged in a pay-as-you-go model based on a per
quantum pricing scheme, e.g. one hour.

Figure 8 shows an example workflow to illustrate the affect of different
scheduling on the its completion time and monetary cost. Assume that the
execution time of data operator A and C is 1 hour and the execution time of
each data operator B is 10 minutes. Assuming that the data transfer time is
negligible.

Figure 8: Example workflow with 3 different kind of operators

Consider two possible schedules for this workflow: Schedule 1: execute all
operators with only one instance. The time required for the dataflow to complete
is: 60+10×100+60 = 1120 minutes or 18.6 hours. Since there is only one host
involved, the cost for this schedule corresponds to 19 hours of instance usage.
Schedule 2: execute each operator in a different instance (i.e, 102 instance
is needed in this case). the completion time is 60+10+60 = 130 minutes or

20



2.17 hours. However, the cost for this schedule is 102 hours of instance usage.
Schedule 2 will run about 9 times faster than Schedule 1, but will cost 5 times
more money.

[10] proposes a general scheduling algorithm which considers both the com-
pletion time and monetary cost. There are two types of optimization problems
targets: constrained and skyline. Typical constrained problems are minimize
completion time given a fixed budget, or minimize monetary cost given a dead-
line. Typical skyline problem is to find trade-offs between completion time and
monetary cost.

5.2 Optimizing Mapping Between Operators and Instances

Algorithm 2 shows a generic nested loop optimizer proposed in [10] that
could solve both the constrained or skyline problems, depending on the values
of its parameters.

Algorithm 2 Scheduling

Input:
G: A workflow DAG
CONST: Solution constrains
FILTER: Solution space filter
LIMIT: Contain limit sequence generator
STOP: Stopping Condition
Scheduling optimizer
Output:
Space: the space of solutions

1: space ← ∅
2: while LIMIT.hasNext() and STOP.continue() do
3: limit ← LIMIT.getNext()
4: next ← OPT(G, limit, CONST)
5: space ← FILTER(space

⋃
{next} )

6: STOP.addFeedback(next)
7: LIMIT.addFeedback(next)
8: end while
9: return space

• CONST represents the constraints a schedule should satisfy. e.g the bud-
get or the deadline.

• FILTER prunes inefficient schedule according to performance goal. For
example,for the skyline problem, the Filter function will keep the schedule
along the skyline and remove the other ones.

• LIMIT is a generator of instance limits. It return the maximum number
of instances the scheduler can use.

• STOP determines whether or not to stop the exploration based on certain
criteria. For example, we can stop the loop when the last 5 schedules do
not differ significantly with respect to completion time.

21



• OPT is a single-objective optimizer that tries to optimally assign the op-
erators to instances, minimizing either the time or the money related to
the schedule.

In this optimizer, the most important module is the OPT function which
returns a optimized mapping between the operator and physical instances de-
pending on the optimizing goal. In [10], the authors propose two different ways
to find such optimal solution: the Greedy scheduling algorithm and the Local
Search scheduling algorithm.

Greedy Scheduling Algorithm It greedily selects one operator from all the
ready operators and assigns it to the ”best” instance among all the available
ones. Depending on the optimization goal, [10] provides several schedulers that
have different criteria in selecting the next operator and the corresponding in-
stances. For example, G-MPT tries to minimize the workflow completion time
by assigning the next operator with the maximum execution time to the con-
tainer that minimizes completion time. other schedulers focus on balancing
instance utilization or minimizing the monetary cost.

Local Search Scheduling Algorithm It starts with an init schedule of
the operators, and moves to a neighbor scheduling if the cost of the neighbor
scheduling is less than the original one. The neighbor scheduling is generated by
assigning a randomly chosen operator from the current scheduling to a different
random-chosen instance. The authors also tried several different scheduler which
differ in the init assignment and the cost criteria. For example, SA-MPT begins
with a random assignment and the cost criteria is the completion time.

5.3 Cost Model

In this section, we describe the cost model used in section 5.2 in determining
the best scheduling according to the completion time or monetary cost.

5.3.1 Completion time modeling

In [10], an operator in a workflow is modeled as op(time, cpu, memory, be-
havior) where time is the execution time of the operator, cpu is its average CPU
utilization measured as a percentage of the host CPU power when executed in
isolation, memory is the maximum memory required for the effective execution
of the operator, and behavior represents the data transfer mode. There are two
different behaviors: pipeline (PL) or store-and-forward (S&F). If behavior is e-
qual to S&F, all inputs to the operator must be available before execution; if it is
equal to PL, execution can start as soon as some input is available. It assumes
that each operator has a uniform resource consumption during its execution
(cpu, memory, and behavior do not change). A flow between two operators:
producer and consumer, is modeled as flow(producer, consumer, data), where
data is the size of the data transferred.

Depends on the data transfer behavior, the execution time of a flow can be
estimated in either of the following two ways:

22



Time cost for flow from S&F operator In this case, the network com-
munication is modeled with a special operator that performs data transferring
called dt. This operator is injected between the operators of the flow and the
execution time of dt is estimated as follows:

dt.time =
DA→B

min(A.network,B.network)
(16)

Time cost for flow from PL operator For pipelined data transferring, no
extra operator will be inserted. However, the time cost of the data transferring
will be reflected in the completion time of the initiated operator. Specifically,
given a flow(A,B, DA→B), the time to completed operator A is increased and
the CPU utilization of A is decreased. The time and CPU property of operator
A are changed to

T = max(A.time+ dt.time,B.time+ dt.time) (17)

CPU =
A.time×A.cpu+ dt.time×DTCPU

T
(18)

where dt.time = DA→B

min(A.network,B.network) .

The instance is the abstraction of the host, encapsulating the resources pro-
vided by the underlying infrastructure. An instance is described as cont(cpu,
memory, network). When more operators assigned to the same instance. A
particular problem arises with the CPU when overlapping operators require at
some point more than 100% utilization together. The authors model such case
by proportionally increasing the execution time of the participating operator.

5.3.2 Monetary cost modeling

The monetary cost to complete a workflow in a cloud environment given a
schedule SG and the cloud pricing scheme (quantum time Qt and the unit cost
Qm ) is approximated as follows: On each instance, we slice time into windows
of length Qt starting from the first operator executed according to the schedule.
The financial cost is then a simple count of the time windows that have at least
one operator running, multiplied by Qm (Illustrated in Figure 9).

m(SG) = Qm × (

|C|∑
i=1

|W |∑
j=1

ε(ci, wj)) (19)

with C = {ci} being the set of instances, W = wj being the set of time-windows,
and

ε(ci, wj) =

{
1 if at least one operator is active in wj in ci
0 otherwise

5.4 Summary

The work described in this section introduces an interesting two-dimension
scheduling problem which considers both the workflow completion time and the

23



Quantum 1 

Instance B 

Quantum 2 Quantum 3 Time 

Instance A 

 3 x Qm 

 2 x Qm 

Figure 9: Illustration of the monetary cost model

monetary costs. It proposes a general framework which could solve both the
constrained and skyline problem and different heuristic optimization strategies.

However, the scheduling algorithm considers a static environment assuming
the in advance knowledge on detailed workflow property and the underlying
system setting. For example, the number of tasks within each MapReduce
job. However, the number of map tasks of the MapReduce job depends on
the input data ( Each map task reads a trunk of the input data which it at
most 64 MB size ) and is not known before the execution7. Besides, there are
a lot of simplifications in the cost model adopted in this work, for example, it
assume the execution time of each operator is the same across different instances.
However, it is usually not the case even in a homogeneous environment due to
factors like data locality. It also uses a over-simplified model in handling CPU
overload. Specifically, it assumes the system knows the CPU usage of each
operator scheduled in an instance and proportionally prolongs the execution
time of the operator if the instance is overloaded ( the total CPU usage of all
the operator scheduled on that instance during certain time is beyond 100%).
However, such assumption is usually not held in reality as the overlapping of
CPU usage among different operators.

6 Summary and Discussion

In this section, we present 4 different works of performance optimization for
MapReduce based workflows ( We category the work from MapReduce online as
another performance optimization strategy here functioning on the MapReduce
architecture ). Table 2 shows a summary of each optimization strategy regarding
to the performance metrics it focus and the factor it targets to improve the
performance.

Opportunities and challenges to apply different optimization strate-
gies in combination In practical, depends on the requirements of different
applications, we can also try to apply these techniques in combination to get
more improvement. For example, we can perform the techniques form AQUA
and MRShare together. Suppose we have a set of workflows, we can first opti-
mize each particular workflow through the workflow optimizer and then apply
the scan sharing techniques on the workflow set to reduce the overall completion
time.

7It is possible to estimate the number of map tasks given the input size but the estimation
will not be accurate, Moreover, the estimation is even more difficult for MapReduce based
workflows since the number of map tasks depends on the output size of the previous job.

24



Table 2: Summary of different optimization strategies
Optimization
Work

Technique Metric Factor

MapReduce
Online

Pipelined data
transmission

Response time Data transmission
costs

MRShare Scan sharing Completion time Initial scan costs
AQUA Intermediate

data reduction
Completion time Intermediate data

costs
Workflow
scheduler

Operator
scheduling

Completion time
/ Monetary cost

Scheduling affect

However, there also could be challenges in applying these optimizations. For
example, if we apply scan sharing and scheduling policy together, it will possibly
degrade the effectiveness of the scheduling policy as scan sharing reduce the
number of concurrent operators by merging MapReduce jobs which could lead
to inefficient scheduling solution during the execution stage. Also, technically,
MRShare and AQUA can also works with the HOP implementation, however,
as with pipelined data transmission model, the I/O costs may not the dominate
factor affecting the completion time, we may not get much improvement by
applying these techniques.

7 Acknowledgments

I would like to thank Prof. Zachary Ives for chairing my WPE-II committee,
as well as Dr. Ludmila Cherkasova, Prof. Andreas Haeberlen and Prof. Boon
Thau Loo for sitting on the committee.

References

[1] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce
environment. In Proceedings of the 13th International Conference on Ex-
tending Database Technology, EDBT ’10, pages 99–110, 2010.

[2] Apache. PigMix Benchmark, http://wiki.apache.org/pig/PigMix, 2010.

[3] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar,
and Rafael Pasquin. Incoop: Mapreduce for incremental computations. In
Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC ’11,
2011.

[4] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan
Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ran-
ganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, Rodrigo
Schmidt, and Amitanand Aiyer. Apache hadoop goes realtime at face-
book. In Proceedings of the 2011 international conference on Management
of data, SIGMOD ’11, pages 1071–1080, 2011.

[5] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled
Elmeleegy, and Russell Sears. Mapreduce online. In Proceedings of the

25



7th USENIX conference on Networked systems design and implementation,
NSDI’10, 2010.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1), 2008.

[7] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston,
B. Reed, S. Srinivasan, and U. Srivastava. Building a High-Level Dataflow
System on Top of Map-Reduce: The Pig Experience. Proc. of the VLDB
Endowment, 2(2), 2009.

[8] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. Cetin, and S. Babu.
Starfish: A Self-tuning System for Big Data Analytics. In Proc. of 5th Conf.
on Innovative Data Systems Research (CIDR), 2011.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. ACM SIGOPS
OS Review, 41(3), 2007.

[10] Herald Kllapi, Eva Sitaridi, Manolis M. Tsangaris, and Yannis Ioannidis.
Schedule optimization for data processing flows on the cloud. In Proceedings
of the 2011 international conference on Management of data, SIGMOD ’11,
2011.

[11] Steven Y. Ko, Imranul Hoque, Brian Cho, and Indranil Gupta. Mak-
ing cloud intermediate data fault-tolerant. In Proceedings of the 1st ACM
symposium on Cloud computing, SoCC ’10, 2010.

[12] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and
Nick Koudas. Mrshare: Sharing across multiple queries in mapreduce.
PVLDB, 3(1):494–505, 2010.

[13] Alper Okcan and Mirek Riedewald. Processing theta-joins using mapre-
duce. In Proceedings of the 2011 international conference on Management
of data, SIGMOD ’11, 2011.

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin:
a Not-So-Foreign Language for Data Processing. Proc. of SIGMOD, 2008.

[15] Kiyoshi Ono and Guy M. Lohman. Measuring the complexity of join enu-
meration in query optimization. In Proceedings of the 16th International
Conference on Very Large Data Bases, VLDB ’90, pages 314–325, 1990.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive - a Warehousing Solution over a Map-
Reduce Framework. Proc. of VLDB, 2009.

[17] X. Wang, C. Olston, A. Sarma, and R. Burns. CoScan: Cooperative Scan
Sharing in the Cloud. In Proc. of the ACM Symposium on Cloud Comput-
ing,(SOCC’2011), 2011.

[18] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, original edi-
tion, 2009.

26



[19] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. Query optimization
for massively parallel data processing. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, 2011.

[20] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion
Stoica. Improving mapreduce performance in heterogeneous environments.
In Proceedings of the 8th USENIX conference on Operating systems design
and implementation, OSDI’08, 2008.

27


	Processing Data-Intensive Workflows in the Cloud
	Recommended Citation

	Processing Data-Intensive Workflows in the Cloud
	Abstract
	Comments

	tmp.1334948721.pdf.9IjS4

