8 research outputs found

    Coupled FPGA/ASIC Implementation of Elliptic Curve Crypto-Processor

    Full text link

    Comprehensive Efficient Implementations of ECC on C54xx Family of Low-cost Digital Signal Processors

    Get PDF
    Resource constraints in smart devices demand an efficient cryptosystem that allows for low power and memory consumption. This has led to popularity of comparatively efficient Elliptic curve cryptog-raphy (ECC). Prior to this paper, much of ECC is implemented on re-configurable hardware i.e. FPGAs, which are costly and unfavorable as low-cost solutions. We present comprehensive yet efficient implementations of ECC on fixed-point TMS54xx series of digital signal processors (DSP). 160-bit prime field GF(p) ECC is implemented over a wide range of coordinate choices. This paper also implements windowed recoding technique to provide better execution times. Stalls in the programming are mini-mized by utilization of loop unrolling and by avoiding data dependence. Complete scalar multiplication is achieved within 50 msec in coordinate implementations, which is further reduced till 25 msec for windowed-recoding method. These are the best known results for fixed-point low power digital signal processor to date

    Flexible Hardware Design for RSA and Elliptic Curve Cryptosystems

    No full text
    This paper presents a scalable hardware implementation of both commonly used public key cryptosystems, RSA and Elliptic Curve Cryptosystem (ECC) on the same platform. The introduced hardware accelerator features a design which can be varied from very small (less than 20 Kgates) targeting wireless applications, up to a very big design (more than 100 Kgates) used for network security. In latter option it can include a few dedicated large number arithmetic units each of which is a systolic array performing the Montgomery Modular Multiplication (MMM). The bound on the Montgomery parameter has been optimized to facilitate more secure ECC point operations. Furthermore, we present a new possibility for CRT scheme which is less vulnerable to side-channel attacks.status: publishe

    Flexible hardware design for RSA and Elliptic Curve Cryptosystems

    No full text
    This paper presents a scalable hardware implementation of both commonly used public key cryptosystems, RSA and Elliptic Curve Cryptosystem (ECC) on the same platform. The introduced hardware accelerator features a design which can be varied from very small (less than 20 Kgates) targeting wireless applications, up to a very big design (more than 100 Kgates) used for network security. In latter option it can include a few dedicated large number arithmetic units each of which is a systolic array performing the Montgomery Modular Multiplication (MMM). The bound on the Montgomery parameter has been optimized to facilitate more secure ECC point operations. Furthermore, we present a new possibility for CRT scheme which is less vulnerable to side-channel attacks

    Flexible hardware design for RSA and Elliptic Curve Cryptosystems

    No full text
    This paper presents a scalable hardware implementation of both commonly used public key cryptosystems, RSA and Elliptic Curve Cryptosystem (ECC) on the same platform. The introduced hardware accelerator features a design which can be varied from very small (less than 20 Kgates) targeting wireless applications, up to a very big design (more than 100 Kgates) used for network security. In latter option it can include a few dedicated large number arithmetic units each of which is a systolic array performing the Montgomery Modular Multiplication (MMM). The bound on the Montgomery parameter has been optimized to facilitate more secure ECC point operations. Furthermore, we present a new possibility for CRT scheme which is less vulnerable to side-channel attacks
    corecore