996 research outputs found

    Fundamental Limits in MIMO Broadcast Channels

    Get PDF
    This paper studies the fundamental limits of MIMO broadcast channels from a high level, determining the sum-rate capacity of the system as a function of system paramaters, such as the number of transmit antennas, the number of users, the number of receive antennas, and the total transmit power. The crucial role of channel state information at the transmitter is emphasized, as well as the emergence of opportunistic transmission schemes. The effects of channel estimation errors, training, and spatial correlation are studied, as well as issues related to fairness, delay and differentiated rate scheduling

    Two-Layered Superposition of Broadcast/Multicast and Unicast Signals in Multiuser OFDMA Systems

    Full text link
    We study optimal delivery strategies of one common and KK independent messages from a source to multiple users in wireless environments. In particular, two-layered superposition of broadcast/multicast and unicast signals is considered in a downlink multiuser OFDMA system. In the literature and industry, the two-layer superposition is often considered as a pragmatic approach to make a compromise between the simple but suboptimal orthogonal multiplexing (OM) and the optimal but complex fully-layered non-orthogonal multiplexing. In this work, we show that only two-layers are necessary to achieve the maximum sum-rate when the common message has higher priority than the KK individual unicast messages, and OM cannot be sum-rate optimal in general. We develop an algorithm that finds the optimal power allocation over the two-layers and across the OFDMA radio resources in static channels and a class of fading channels. Two main use-cases are considered: i) Multicast and unicast multiplexing when KK users with uplink capabilities request both common and independent messages, and ii) broadcast and unicast multiplexing when the common message targets receive-only devices and KK users with uplink capabilities additionally request independent messages. Finally, we develop a transceiver design for broadcast/multicast and unicast superposition transmission based on LTE-A-Pro physical layer and show with numerical evaluations in mobile environments with multipath propagation that the capacity improvements can be translated into significant practical performance gains compared to the orthogonal schemes in the 3GPP specifications. We also analyze the impact of real channel estimation and show that significant gains in terms of spectral efficiency or coverage area are still available even with estimation errors and imperfect interference cancellation for the two-layered superposition system

    On rate capacity and signature sequence adaptation in downlink of MC-CDMA system

    Get PDF
    This dissertation addresses two topics in the MC-CDMA system: rate capacity and adaptation of users\u27 signature sequences. Both of them are studied for the downlink communication scenario with multi-code scheme. The purpose of studying rate capacity is to understand the potential of applying MC-CDMA technique for high speed wireless data communications. It is shown that, to maintain high speed data transmission with multi-code scheme, each mobile should cooperatively decode its desired user\u27s encoded data symbols which are spread with different signature sequences simultaneously. Higher data rate can be achieved by implementing dirty paper coding (DPC) to cooperatively encode all users\u27 data symbols at the base station. However, the complexity of realizing DPC is prohibitively high. Moreover, it is found that the resource allocation policy has profound impact on the rate capacity that can be maintained in the system. Nevertheless, the widely adopted proportional resource allocation policy is only suitable for the communication scenario in which the disparity of users\u27 channel qualities is small. When the difference between users\u27 channel qualities is large, one must resort to non-proportional assignment of power and signature sequences. Both centralized and distributed schemes are proposed to adapt users\u27 signature sequences in the downlink of MC-CDMA system. With the former, the base station collects complete channel state information and iteratively adapts all users\u27 signature sequences to optimize an overall system performance objective function, e.g. the weighted total mean square error (WTMSE). Since the proposed centralized scheme is designed such that each iteration of signature sequence adaptation decreases the WTMSE which is lower bounded, the convergence of the proposed centralized scheme is guaranteed. With the distributed signature sequence adaptation, each user\u27s signature sequences are independently adapted to optimize the associated user\u27s individual performance objective function with no regard to the performance of other users in the system. Two distributed adaptation schemes are developed. In one scheme, each user adapts its signature sequences under a pre-assigned power constraint which remains unchanged during the process of adaptation. In the other scheme, pricing methodology is applied so that the transmission power at the base station is properly distributed among users when users\u27 signature sequences are adapted. The stability issue of these distributed adaptation schemes is analyzed using game theory frame work. It is proven that there always exists a set of signature sequences at which no user can unilaterally adapt its signature sequences to further improve its individual performance, given the signature sequences chosen by other users in the system
    corecore