11 research outputs found

    Microscopic description of 2d topological phases, duality and 3d state sums

    Full text link
    Doubled topological phases introduced by Kitaev, Levin and Wen supported on two dimensional lattices are Hamiltonian versions of three dimensional topological quantum field theories described by the Turaev-Viro state sum models. We introduce the latter with an emphasis on obtaining them from theories in the continuum. Equivalence of the previous models in the ground state are shown in case of the honeycomb lattice and the gauge group being a finite group by means of the well-known duality transformation between the group algebra and the spin network basis of lattice gauge theory. An analysis of the ribbon operators describing excitations in both types of models and the three dimensional geometrical interpretation are given.Comment: 19 pages, typos corrected, style improved, a final paragraph adde

    Quantum Gravity: Motivations and Alternatives

    Get PDF
    The mutual conceptual incompatibility between GR and QM/QFT is generally seen as the most essential motivation for the development of a theory of Quantum Gravity (QG). It leads to the insight that, if gravity is a fundamental interaction and QM is universally valid, the gravitational field will have to be quantized, not at least because of the inconsistency of semi-classical theories of gravity. If this means to quantize GR, its identification of the gravitational field with the spacetime metric has to be taken into account. And the resulting quantum theory has to be background-independent. This can not be achieved by means of quantum field theoretical procedures. More sophisticated strategies have to be applied. One of the basic requirements for such a quantization strategy is that the resulting quantum theory has GR as a classical limit. - However, should gravity not be a fundamental, but an residual, emergent interaction, it could very well be an intrinsically classical phenomenon. Should QM be nonetheless universally valid, we had to assume a quantum substrate from which gravity would result as an emergent classical phenomenon. And there would be no conflict with the arguments against semi-classical theories, because there would be no gravity at all on the substrate level. The gravitational field would not have any quantum properties, and a quantization of GR would not lead to any fundamental theory. The objective of a theory of 'QG' would instead be the identification of the quantum substrate from which gravity results. - The paper tries to give an overview over the main options for theory construction in the field of QG. Because of the still unclear status of gravity and spacetime, it pleads for the necessity of a plurality of conceptually different approaches to QG.Comment: 32 page

    Communication protocols and quantum error-correcting codes from the perspective of topological quantum field theory

    Full text link
    Topological quantum field theories (TQFTs) provide a general, minimal-assumption language for describing quantum-state preparation and measurement. They therefore provide a general language in which to express multi-agent communication protocols, e.g. local operations, classical communication (LOCC) protocols. Here we construct LOCC protocols using TQFT, and show that LOCC protocols induce quantum error-correcting codes (QECCs) on the agent-environment boundary. Such QECCs can be regarded as implementing, or inducing the emergence of, spacetimes on such boundaries. We investigate this connection between inter-agent communication and spacetime using BF and Chern-Simons theories, and then using topological M-theory.Comment: 52 page

    Quantum gravity: motivations and alternatives

    Get PDF
    The mutual conceptual incompatibility between General Relativity and Quantum Mechanics / Quantum Field Theory is generally seen as the most essential motivation for the development of a theory of Quantum Gravity. It leads to the insight that, if gravity is a fundamental interaction and Quantum Mechanics is universally valid, the gravitational field will have to be quantized, not at least because of the inconsistency of semi-classical theories of gravity. The objective of a theory of Quantum Gravity would then be to identify the quantum properties and the quantum dynamics of the gravitational field. If this means to quantize General Relativity, the general-relativistic identification of the gravitational field with the spacetime metric has to be taken into account. The quantization has to be conceptually adequate, which means in particular that the resulting quantum theory has to be background-independent. This can not be achieved by means of quantum field theoretical procedures. More sophisticated strategies, like those of Loop Quantum Gravity, have to be applied. One of the basic requirements fo

    A Panorama Of Physical Mathematics c. 2022

    Full text link
    What follows is a broad-brush overview of the recent synergistic interactions between mathematics and theoretical physics of quantum field theory and string theory. The discussion is forward-looking, suggesting potentially useful and fruitful directions and problems, some old, some new, for further development of the subject. This paper is a much extended version of the Snowmass whitepaper on physical mathematics [1]

    This Week's Finds in Mathematical Physics (1-50)

    Full text link
    These are the first 50 issues of This Week's Finds of Mathematical Physics, from January 19, 1993 to March 12, 1995. These issues focus on quantum gravity, topological quantum field theory, knot theory, and applications of nn-categories to these subjects. However, there are also digressions into Lie algebras, elliptic curves, linear logic and other subjects. They were typeset in 2020 by Tim Hosgood. If you see typos or other problems please report them. (I already know the cover page looks weird).Comment: 242 page

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition
    corecore