7 research outputs found

    Flash Caching on the Storage Client

    Get PDF
    Flash memory has recently become popular as a caching medium. Most uses to date are on the storage server side. We investigate a different structure: flash as a cache on the client side of a networked storage environment. We use trace-driven simulation to explore the design space. We consider a wide range of configurations and policies to determine the potential client-side caches might offer and how best to arrange them. Our results show that the flash cache writeback policy does not significantly affect performance. Write-through is sufficient; this greatly simplifies cache consistency handling. We also find that the chief benefit of the flash cache is its size, not its persistence. Cache persistence offers additional performance benefits at system restart at essentially no runtime cost. Finally, for some workloads a large flash cache allows using miniscule amounts of RAM for file caching (e.g., 256 KB) leaving more memory available for application use.Engineering and Applied Science

    Stochastic Modeling of Hybrid Cache Systems

    Full text link
    In recent years, there is an increasing demand of big memory systems so to perform large scale data analytics. Since DRAM memories are expensive, some researchers are suggesting to use other memory systems such as non-volatile memory (NVM) technology to build large-memory computing systems. However, whether the NVM technology can be a viable alternative (either economically and technically) to DRAM remains an open question. To answer this question, it is important to consider how to design a memory system from a "system perspective", that is, incorporating different performance characteristics and price ratios from hybrid memory devices. This paper presents an analytical model of a "hybrid page cache system" so to understand the diverse design space and performance impact of a hybrid cache system. We consider (1) various architectural choices, (2) design strategies, and (3) configuration of different memory devices. Using this model, we provide guidelines on how to design hybrid page cache to reach a good trade-off between high system throughput (in I/O per sec or IOPS) and fast cache reactivity which is defined by the time to fill the cache. We also show how one can configure the DRAM capacity and NVM capacity under a fixed budget. We pick PCM as an example for NVM and conduct numerical analysis. Our analysis indicates that incorporating PCM in a page cache system significantly improves the system performance, and it also shows larger benefit to allocate more PCM in page cache in some cases. Besides, for the common setting of performance-price ratio of PCM, "flat architecture" offers as a better choice, but "layered architecture" outperforms if PCM write performance can be significantly improved in the future.Comment: 14 pages; mascots 201

    Centaur: Host-Side SSD Caching for Storage Performance Control

    Full text link

    Client-side Flash Caching for Cloud Systems

    Full text link

    Flash Caching for Cloud Computing Systems

    Get PDF
    As the size of cloud systems and the number of hosted virtual machines (VMs) rapidly grow, the scalability of shared VM storage systems becomes a serious issue. Client-side flash-based caching has the potential to improve the performance of cloud VM storage by employing flash storage available on the VM hosts to exploit the locality inherent in VM IOs. However, there are several challenges to the effective use of flash caching in cloud systems. First, cache configurations such as size, write policy, metadata persistency and RAID level have significant impacts on flash caching. Second, the typical capacity of flash devices is limited compared to the dataset size of consolidated VMs. Finally, flash devices wear out and face serious endurance issues which are aggravated by the use for caching. This dissertation presents the research for addressing these problems of cloud flash caching in the following three aspects. First, it presents a thorough study of different cache configurations including a new cache-optimized RAID configuration using a large amount of long-term traces collected from real-world public and private clouds. Second, it studies an on-demand flash cache management solution for meeting VM cache demands and minimizing device wear-out. It uses a new cache demand model Reuse Working Set (RWS) to capture the data with good temporal locality, and uses the RWS size (RWSS) to model a workload?s cache demand. Finally, to handle situations where a cache is insufficient for VMs? demands, it employs dynamic cache migration to balance cache load across hosts by live migrating cached data along with the VMs. The results show that the cache-optimized RAID improves performance by 137% without sacrificing reliability, compared to traditional RAID. The RWSS-based on-demand cache allocation reduces workload?s cache usage by 78% and lowers the amount of writes sent to cache device by 40%, compared to traditional working set based cache allocation. Combining on-demand cache allocation with dynamic cache migration for 12 concurrent VMs, results show 28% higher hit ratio and 28% lower 90th percentile IO latency, compared to the case without cache allocation

    Reliability of SSD Storage Systems

    Get PDF
    Solid-state drives (SSDs) are attractive storage components due to their many attractive properties, however, concerns about their reliability still remain and this delays the wider deployment of the SSDs. Many protection schemes have been proposed to improve the reliability of SSDs. For example, some techniques like error correction codes (ECC), log-like writing of ash translation layer (FTL), garbage collection and wear leveling improve the reliability of SSD at the device level. Composing an array of SSDs and employing system level parity protection is one of the popular protection schemes at the system level. Enterprise class (high-end) SSDs are faster and more resilient than client class (low-end) SSDs but they are expensive to be deployed in large scale storage systems. It is an attractive and practical alternative to exploit the high-end SSDs as a cache and low-end SSDs as main storage. The high-end SSD cache equipped on a low-end SSD array enhances both latency and reduces write count of the SSD storage system at the same time. This work analyzes the effectiveness of protection schemes originally designed for HDDs but applied to SSD storage systems. We find that different characteristics of HDDs and SSDs make integration of those solutions in SSD storage systems not so straight-forward. This work, at first, analyzes the effectiveness of the device level protection schemes such as ECC and scrubbing. A Markov model based analysis of the protection schemes is presented. Our model considers time varying nature of the reliability of ash memory as well as write amplification of various device level protection schemes. Our study shows that write amplification from these various sources can significantly affect the benefits of protection schemes in improving the lifetime. Based on the results from our analysis, we propose that bit errors within an SSD page be left uncorrected until a threshold of errors are accumulated. We show that such an approach can significantly improve lifetimes by up to 40%. This work also analyzes the effectiveness of parity protection over SSD arrays, a widely used protection scheme for SSD arrays at system level. The parity protection is typically employed to compose reliable storage systems. However, careful consideration is required when SSD based systems employ parity protection. Additional writes are required for parity updates. Also, parity consumes space on the device, which results in write amplification from less efficient garbage collection at higher space utilization. We present a Markov model to estimate the lifetime of SSD based RAID systems in different environments. In a small array, our results show that parity protection provides benefit only with considerably low space utilizations and low data access rates. However, in a large system, RAID improves data lifetime even when we take write amplification into account. This work explores how to optimize a mixed SSD array in terms of performance and lifetime. We show that simple integration of different classes of SSDs in traditional caching policies results in poor reliability. We also reveal that caching policies with static workload classifiers are not always efficient. We propose a sampling based adaptive approach that achieves fair workload distribution across the cache and the storage. The proposed algorithm enables fine-grained control of the workload distribution which minimizes latency over lifetime of mixed SSD arrays. We show that our adaptive algorithm is very effective in improving the latency over lifetime metric, on an average, by up to 2.36 times over LRU, across a number of workloads

    Datacenter Architectures for the Microservices Era

    Full text link
    Modern internet services are shifting away from single-binary, monolithic services into numerous loosely-coupled microservices that interact via Remote Procedure Calls (RPCs), to improve programmability, reliability, manageability, and scalability of cloud services. Computer system designers are faced with many new challenges with microservice-based architectures, as individual RPCs/tasks are only a few microseconds in most microservices. In this dissertation, I seek to address the most notable challenges that arise due to the dissimilarities of the modern microservice based and classic monolithic cloud services, and design novel server architectures and runtime systems that enable efficient execution of µs-scale microservices on modern hardware. In the first part of my dissertation, I seek to address the problem of Killer Microseconds, which refers to µs-scale “holes” in CPU schedules caused by stalls to access fast I/O devices or brief idle times between requests in high throughput µs-scale microservices. Whereas modern computing platforms can efficiently hide ns-scale and ms-scale stalls through micro-architectural techniques and OS context switching, they lack efficient support to hide the latency of µs-scale stalls. In chapter II, I propose Duplexity, a heterogeneous server architecture that employs aggressive multithreading to hide the latency of killer microseconds, without sacrificing the Quality-of-Service (QoS) of latency-sensitive microservices. Duplexity is able to achieve 1.9× higher core utilization and 2.7× lower iso-throughput 99th-percentile tail latency over an SMT-based server design, on average. In chapters III-IV, I comprehensively investigate the problem of tail latency in the context of microservices and address multiple aspects of it. First, in chapter III, I characterize the tail latency behavior of microservices and provide general guidelines for optimizing computer systems from a queuing perspective to minimize tail latency. Queuing is a major contributor to end-to-end tail latency, wherein nominal tasks are enqueued behind rare, long ones, due to Head-of-Line (HoL) blocking. Next, in chapter IV, I introduce Q-Zilla, a scheduling framework to tackle tail latency from a queuing perspective, and CoreZilla, a microarchitectural instantiation of the framework. Q-Zilla is composed of the ServerQueue Decoupled Size-Interval Task Assignment (SQD-SITA) scheduling algorithm and the Express-lane Simultaneous Multithreading (ESMT) microarchitecture, which together seek to address HoL blocking by providing an “express-lane” for short tasks, protecting them from queuing behind rare, long ones. By combining the ESMT microarchitecture and the SQD-SITA scheduling algorithm, CoreZilla is able to improves tail latency over a conventional SMT core with 2, 4, and 8 contexts by 2.25×, 3.23×, and 4.38×, on average, respectively, and outperform a theoretical 32-core scale-up organization by 12%, on average, with 8 contexts. Finally, in chapters V-VI, I investigate the tail latency problem of microservices from a cluster, rather than server-level, perspective. Whereas Service Level Objectives (SLOs) define end-to-end latency targets for the entire service to ensure user satisfaction, with microservice-based applications, it is unclear how to scale individual microservices when end-to-end SLOs are violated or underutilized. I introduce Parslo as an analytical framework for partial SLO allocation in virtualized cloud microservices. Parslo takes a microservice graph as an input and employs a Gradient Descent-based approach to allocate “partial SLOs” to different microservice nodes, enabling independent auto-scaling of individual microservices. Parslo achieves the optimal solution, minimizing the total cost for the entire service deployment, and is applicable to general microservice graphs.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/167978/1/miramir_1.pd
    corecore