
RELIABILITY OF SSD STORAGE SYSTEMS

A Dissertation

by

SANGWHAN MOON

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, A. L. Narasimha Reddy
Committee Members, Riccardo Bettati

Paul Gratz
Henry Pfister

Head of Department, Miroslav M. Begovic

December 2015

Major Subject: Computer Engineering

Copyright 2015 Sangwhan Moon

ABSTRACT

Solid-state drives (SSDs) are attractive storage components due to their many

attractive properties, however, concerns about their reliability still remain and this

delays the wider deployment of the SSDs.

Many protection schemes have been proposed to improve the reliability of SSDs.

For example, some techniques like error correction codes (ECC), log-like writing

of flash translation layer (FTL), garbage collection and wear leveling improve the

reliability of SSD at the device level. Composing an array of SSDs and employing

system level parity protection is one of the popular protection schemes at the system

level. Enterprise class (high-end) SSDs are faster and more resilient than client class

(low-end) SSDs but they are expensive to be deployed in large scale storage systems.

It is an attractive and practical alternative to exploit the high-end SSDs as a cache

and low-end SSDs as main storage. The high-end SSD cache equipped on a low-end

SSD array enhances both latency and reduces write count of the SSD storage system

at the same time.

This work analyzes the effectiveness of protection schemes originally designed for

HDDs but applied to SSD storage systems. We find that different characteristics of

HDDs and SSDs make integration of those solutions in SSD storage systems not so

straight-forward.

This work, at first, analyzes the effectiveness of the device level protection schemes

such as ECC and scrubbing. A Markov model based analysis of the protection

schemes is presented. Our model considers time varying nature of the reliability

of flash memory as well as write amplification of various device level protection

schemes. Our study shows that write amplification from these various sources can

ii

significantly affect the benefits of protection schemes in improving the lifetime. Based

on the results from our analysis, we propose that bit errors within an SSD page be

left uncorrected until a threshold of errors are accumulated. We show that such an

approach can significantly improve lifetimes by up to 40%.

This work also analyzes the effectiveness of parity protection over SSD arrays, a

widely used protection scheme for SSD arrays at system level. The parity protection

is typically employed to compose reliable storage systems. However, careful consid-

eration is required when SSD based systems employ parity protection. Additional

writes are required for parity updates. Also, parity consumes space on the device,

which results in write amplification from less efficient garbage collection at higher

space utilization. We present a Markov model to estimate the lifetime of SSD based

RAID systems in different environments. In a small array, our results show that

parity protection provides benefit only with considerably low space utilizations and

low data access rates. However, in a large system, RAID improves data lifetime even

when we take write amplification into account.

This work explores how to optimize a mixed SSD array in terms of performance

and lifetime. We show that simple integration of different classes of SSDs in tradi-

tional caching policies results in poor reliability. We also reveal that caching policies

with static workload classifiers are not always efficient. We propose a sampling based

adaptive approach that achieves fair workload distribution across the cache and the

storage. The proposed algorithm enables fine-grained control of the workload distri-

bution which minimizes latency over lifetime of mixed SSD arrays. We show that

our adaptive algorithm is very effective in improving the latency over lifetime metric,

on an average, by up to 2.36 times over LRU, across a number of workloads.

iii

To my father, my mother, and my sister.

iv

ACKNOWLEDGEMENTS

I sincerely appreciate my advisor, Dr. A. L. Narasimha Reddy, for his guidance

and consistent support with patience on this study. I am thankful to my committee

members, Dr. Paul Gratz, Dr. Henry Pfister, and Dr. Riccardo Bettati, for their

precious time to review and comment on this research.

And I especially thank to my family, my father, my mother, and my sister for

their their continuing love and sincere support.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xii

1. INTRODUCTION . 1

1.1 Device Level Protection Schemes . 1
1.2 System Level Protection Schemes I: Parity Protection 3
1.3 System Level Protection Schemes II: A Mixed SSD Array 4

2. DEVICE LEVEL PROTECTION SCHEMES 7

2.1 Device level protection schemes . 7
2.1.1 Error correction codes (ECCs) 8
2.1.2 Scrubbing . 8
2.1.3 Wear-leveling and garbage collection 8
2.1.4 Write amplification . 9

2.2 Reliability model . 11
2.2.1 Raw bit error rate . 12
2.2.2 Uncorrectable page error probability 13
2.2.3 Mean time to data loss . 15
2.2.4 Write amplification . 15

2.3 Evaluation . 17
2.3.1 Practical issues . 17
2.3.2 Sources of degradation . 18

2.4 Threshold based ECC . 22

3. SYSTEM LEVEL PROTECTION SCHEMES I: PARITY PROTECTION 25

3.1 System level protection schemes . 26
3.1.1 Parity Protection . 26

vi

DEDICATION . iv

3.1.2 Write amplification . 26
3.2 SSD based RAID . 27
3.3 Lifetime model . 29

3.3.1 Uncorrectable page error rate 29
3.3.2 Data loss rate . 32
3.3.3 Mean time to data loss . 34
3.3.4 Write amplification . 34

3.4 Simulation . 41
3.5 Evaluation . 43

3.5.1 Simulation environment . 43
3.5.2 Review of analysis of single SSD 44
3.5.3 Simulation . 45
3.5.4 The number of devices . 47
3.5.5 The amount of data . 47
3.5.6 Garbage collection policy . 49
3.5.7 Advanced techniques . 50
3.5.8 Read:write ratio . 52
3.5.9 Workload intensity . 52
3.5.10 Workload characteristics . 54
3.5.11 Device failure rate . 55
3.5.12 Non-uniform workload . 56
3.5.13 Erase block size . 58
3.5.14 Spare SSD . 59
3.5.15 Scalability . 59
3.5.16 Summary of evaluation . 60

4. SYSTEM LEVEL PROTECTION SCHEMES II: A MIXED SSD ARRAY 62

4.1 System Level Protection Schemes : A Mixed SSD Array 62
4.1.1 Example . 65

4.2 Problem Statement . 68
4.3 Caching policies . 69

4.3.1 Request size . 69
4.3.2 Hotness . 70
4.3.3 Probabilistic caching policy 72

4.4 Adaptive workload distribution . 75
4.4.1 Static threshold based analysis 75
4.4.2 Sampling based approach . 78

4.5 Evaluation . 80
4.5.1 Simulator . 80
4.5.2 Simulation environment . 81
4.5.3 Adaptive threshold algorithm 84
4.5.4 Different caching policies . 86

vii

4.5.5 Cache provisioning . 88
4.5.6 Target latency . 89
4.5.7 Sampling rate . 89
4.5.8 Write amplification . 91

5. RELATED WORK . 92

6. CONCLUSION . 96

REFERENCES . 98

viii

LIST OF FIGURES

FIGURE Page

1.1 Different classes of SSDs . 5

2.1 Write amplification from recovery process 10

2.2 Write amplification from different point of views 11

2.3 A Markov model of uncorrectable page error probability I 14

2.4 A Markov model of uncorrectable page error probability II 16

2.5 Impact of various factors on lifetime (Relative MTTDL) 19

2.6 Read-after-write mechanism . 21

2.7 Write amplification and threshold based ECC 23

2.8 A Markov model of uncorrectable page error probability III 24

3.1 RAID architecture of an SSD array 28

3.2 A Markov model of page error rate 31

3.3 A Markov model of RAID5 system 33

3.4 An example of a large write . 36

3.5 A Markov model of page error rate with TECC 39

3.6 A large write over RAID5 . 40

3.7 Simulator overview . 42

3.8 Lifetime of an SSD vs. space utilization 45

3.9 Simulation vs. analysis result of a single SSD (80 MB, 128 KB/s) . . 46

3.10 Simulation result of SSD arrays (80 MB, 128 KB/s) 46

ix

3.11 Lifetime of different number of SSDs 48

3.12 Lifetime of 8 SSDs with different amounts of data 48

3.13 Lifetime of 8 SSDs with different garbage collection/ECC algorithms 49

3.14 Lifetime of 8 SSDs with different garbage collection policies 50

3.15 Lifetime of SSD arrays with TECC. 51

3.16 Lifetime of 8 SSDs with/without Scrubbing/TECC. 52

3.17 Lifetime of 8 SSDs with different read:write ratios in workload 53

3.18 Lifetime improvement of 8 SSDs with different workload intensities . 53

3.19 Lifetime of SSD arrays with 31.25 MB/s/dev workload 54

3.20 Lifetime of SSD arrays at higher annual device failure rate (5%) . . . 55

3.21 Lifetime of 8 SSDs with different annual device failure rates 56

3.22 Write amplification from garbage collection (policy: modified FIFO) . 57

3.23 Lifetime of 8 SSDs with different average write lengths 58

3.24 Accumulative increment in the lifetime of 8 SSDs 59

3.25 Lifetime of 8 SSDs with different erase block sizes, q = 512 KB 60

3.26 Lifetime improvement of SSD arrays (using one more SSD for RAID5) 61

3.27 A series of 4-SSD RAID5s vs. striping 61

4.1 Overview of a mixed SSD array with LRU caching policy 63

4.2 Overview of hotness based caching policy 71

4.3 Workload distribution by (a) request size and (b) reference count. . . 73

4.4 Workload distribution (probabilistic caching policy) 74

4.5 Static threshold based analysis of size based caching policy 76

4.6 Static threshold based analysis of probabilistic caching policy 77

4.7 Probabilistic cache with sampling method (sampling rate: 1%) 80

x

4.8 Trace-driven simulator overview . 82

4.9 Cache hit rates vs. cache provisioning 83

4.10 Adaptive threshold in probabilistic caching policy 85

4.11 Different caching policies, target latency = 0.4 ms 87

4.12 Latency over lifetime vs. cache provisioning 88

4.13 Latency over lifetime vs. target latencies 89

4.14 Latency over lifetime vs. sampling rates 90

xi

LIST OF TABLES

TABLE Page

2.1 Raw bit error rate λ(x) = A · e(B·x) 12

2.2 Write amplification from ECC recovery at different P/E cycles 18

2.3 Probability distribution of the number of bit errors (n) 23

2.4 Relative MTTDL of threshold based ECC 24

3.1 List of symbols used in analysis models 30

3.2 Simulation environment . 44

4.1 List of symbols . 64

4.2 Practical configuration of SSDs and workload 66

xii

1. INTRODUCTION

Solid state drives (SSDs) storage systems are receiving wide attention and their

deployment is steadily increasing because of their higher performance and lower

power consumption than hard disk drives (HDDs) storage systems. Advanced inte-

gration techniques such as multi-level cell (MLC) have considerably dropped cost-

per-bit of SSDs such that wide deployment of SSDs is feasible [17, 18]. While their

deployment is steadily increasing, the write endurance of SSDs still remains as one

of the main concerns. Since the write and erase operations on an SSD wear it out

gradually, after a certain number of operations, data could potentially be lost [19,58].

This write endurance problem is related to the physical features of flash memory, the

most popular storage media for SSDs1.

1.1 Device Level Protection Schemes

Flash memory can employ single-level cells (SLC) or multi-level cells (MLC).

While MLC allows significant improvements of capacity over SLC, the lifetime of

MLC is comparably lower, at 10,000 Program/Erase (P/E) cycles compared to

100,000 P/E cycles for SLC.

Many studies have investigated the bit error failure behavior of SLC and MLC.

Two notable studies in this direction include [19,58]. These studies point out that the

bit error rate of the flash memory increases with increased number of P/E cycles. In

fact, these studies model the bit error rate as an exponential function of the number

of P/E cycles the cell has gone through. This variable bit error rate requires further

study to understand the implication on the flash memory.

Many approaches have been suggested to overcome the write endurance limi-

1We assume flash memory based SSDs only in this dissertation.

1

tation. An error correction code (ECC) [57] encodes data and stores the encoded

data in order to detect and correct errors at a page level, of size, say 4KB. The

ECC is checked and used to correct any detected errors whenever the page is read.

Scrubbing [49, 54] actively scans data pages and detects/corrects latent errors in

infrequently accessed pages using ECC. Flash memory employs a Flash Translation

Layer (FTL) in order to provide wear-leveling of blocks. Flash cells have to be erased

before they can be programmed, requiring a copy-on-write mechanism. This copy-

on-write mechanism is exploited to spread the writes across all the memory such that

frequent writes to one address do not result in some memory cells being worn out

while other memory cells are not written.

Some of the protection methods mentioned above, however, require additional

writes and these writes in turn can cause wear out of SSD. For example, log-like

writing of FTL can cause fragmentation which requires garbage collection process,

which results in writes and erases when it moves fragmented data to a different place

in the memory. Pages are corrected and rewritten to the memory when ECC detects

bit errors in the pages. The recovery process issues an additional write to write the

corrected page. While ECC is beneficial to detect and correct the bit errors, the

extra writes lead to higher bit error rates and potentially can lead to lower lifetimes.

Scrubbing increases the chances to detect and correct errors in a page, before the page

accumulates too many errors to become uncorrectable by ECC. However, frequent

recovery from scrubbing could lead to extra writes and in turn could lower the SSD’s

lifetime.

Because of copy-on-write, garbage collection and other operations, write to one

block may actually result in writes to more than one block. The ratio of actual

number of writes to the number of writes issued to the device is termed write am-

plification. While these excess writes may be necessary, the writes cause wear out of

2

flash cells and hence can potentially reduce the SSD’s lifetime.

In Section 2, we explore the relationship between the write amplification of the

device level data protection schemes and the reliability of an SSD.

1.2 System Level Protection Schemes I: Parity Protection

When the device level protection schemes does not recover data corruption enough,

system level protection schemes can be employed additionally. Composing an array

of SSDs and employing system level parity protection is one of the popular protection

schemes at the system level. In Section 3, we study popular system level protection

schemes: striping (RAID0), mirroring (RAID1), and RAID5.

RAID5 has been employed to improve the lifetime of HDD based storage sys-

tems for decades [46]. However, careful decisions should be made with SSDs when

the system level parity protection is employed. First, SSDs have limited write en-

durance. Parity protection results in redundant writes whenever a write is issued

to the device array. Unlike HDDs, redundant writes for parity update can severely

degrade the lifetime of SSDs. Parity data consumes device capacity and increases

the space utilization. While it has not been a serious problem in HDDs, increased

space utilization leads to less efficient garbage collection which in turn increases the

write workload.

Many studies have investigated SSD based RAID systems. The notable study [26]

points out the pitfalls of SSD based RAID5 in terms of performance. They discuss

the behavior of random writes and parity updates, and conclude striping provides

much higher throughput than RAID5. We consider the impact of write workload on

reliability. Previous studies [16,55] have considered different architectures to reduce

the parity update performance penalty.

Section 3 explores the relationship between parity protection and the lifetime of

3

an SSD array. Different parameters such as the number of SSDs in an SSD array,

the amount of data per device, and average write length of workload are extensively

explored in the section.

1.3 System Level Protection Schemes II: A Mixed SSD Array

There are different classes of SSDs for different applications. Enterprise class

(high-end) fast SSDs use I/O interfaces such as PCI express (PCIe). The high-

end SSDs usually consist of SLC flash memory whose write endurance is of the

order of 100K write cycles, large enough to endure enterprise workloads for a few

years. However, the high-end SSDs are expensive per gigabyte for deployment in

large scale storage systems. On the other hand, a client class (low-end) SSD uses

traditional serial ATA (SATA) interface and may employ MLC flash memory which

is cheaper per gigabyte than SLC. However, the write endurance of MLC is an order

of magnitude less than SLC, in the 10K-30K range 2.

Figure 1.1 shows the different classes of commercial SSDs with their cost and

reliability. Each point shows cost per gigabyte (lower is better) on the y-axis and

device writes per day (DWPD, higher is better) of recent SSDs from various vendors

on the x-axis . The DWPD is a widely used industrial metric for the reliability of

an SSD. It means that the lifetime of the SSD is only guaranteed when the entire

device is written less than DWPD times per day. The figure shows high-end SSDs

provide higher reliability while low-end SSDs provide cost-efficiency.

Several vendors are offering SSD arrays combining these devices in a storage

hierarchy. These systems employ high-end SLC SSD as a cache and low-end MLC

SSD as backend storage [47]. These systems try to improve performance at a lower

2 Recent triple-level cell (TLC) is cheaper than MLC, but it has only 3K write endurance which
is two orders of magnitudes smaller than SLC [18]. Phase change memory (PCM) has 108-1010

write endurance which is two orders of magnitude larger than SLC [32].

4

0.1	

1	

10	

100	

0.1	 1	 10	 100	

Co
st
	 ($

/G
B)
	

Device	 Writes	 Per	 Day	 (DWPD,	 higher	 is	 be:er)	

High-end SSDs
Low-end SSDs

Figure 1.1: Different classes of SSDs

cost per byte. Not much work has been done in understanding the data lifetimes

in such arrays. While the high-end SSD can improve lifetimes due to higher write

endurance, they tend to absorb majority of the workload when employed as a cache.

In an SSD array, the performance improves as cache hit rates go up and more and

more requests are satisfied at the speed of high-end SSD. However, as a higher fraction

of workload is absorbed in the cache, the SLC cells may wear out faster due to higher

rate of writes than the MLC cells in the backend storage which absorbs only a small

fraction of the write workload at higher hit rates. As a result, the lifetimes of data

in an SSD array which equals the minimum of the data lifetimes in both the cache

and the backend may be reduced as the cache absorbs a higher workload and wears

out in time faster than the backend storage. Hence, it is important to balance the

workload in such an SSD array considering both performance and data lifetimes.

In Section 4, we show that the high-end SSD cache can wear out faster than the

low-end SSD main storage, thus, balancing the performance and lifetime of a mixed

SSD array is important. In that section, we propose a sampling based approach to

minimize the latency and maximize the lifetime of the mixed SSD array at the same

5

time.

This work focuses its attention on the reliability of a wide range of SSD storage

systems including a single SSD device in Section 2, an SSD array at system level in

Section 3, and a mixed SSD array in Section 4. Section 5 introduces the related work

and Section 6 concludes this dissertation.

6

2. DEVICE LEVEL PROTECTION SCHEMES*

We categorize data protection schemes for Solid State Drives (SSDs) into two

levels: device level protection and system level protection. In this section, we explore

the relationship between the device level protection schemes such as error correction

codes (ECCs) and the reliability of SSD. This section makes the following significant

contributions:

• We provide a model for analyzing an SSD, taking variable bit error rate and

the write amplification from the data protection schemes into account.

• We show that write amplification from ECC recovery and garbage collection

can contribute up to a loss of 50% of data lifetime in an SSD.

• We propose a technique to reduce the write amplification from ECC recovery

that improves the data lifetime significantly by up to 40%.

Section 2.1 introduces various device level protection schemes for SSDs. Section

2.2 builds reliability model of an SSD considering these protection schemes. Section

2.3 evaluates the reliability model. We show that write amplification from frequent

ECC recovery results in less data lifetime in an SSD. Section 2.4 proposes a novel

protection scheme to reduce the write amplification from frequent ECC recovery.

2.1 Device level protection schemes

A number of techniques have been developed to protect SSDs at the device level.

In this section, widely used methods and their write amplifications are discussed.

* Part of this section is reprinted with permission from Sangwhan Moon and A.L.N. Reddy, Write
Amplification due to ECC on Flash Memory or Leave those Bit Errors Alone, Mass Storage Systems
and Technologies, 2012 IEEE 28th Symposium on, April 2012, c©2012 IEEE.

7

2.1.1 Error correction codes (ECCs)

ECC encodes data into check bits, and the encoded data is exploited to detect

and correct errors in the data. The number of detectable and correctable errors is

highly dependent on the complexity of the employed ECC. Since recent multi level

cell (MLC) flash memory is prone to more errors than single level cell (SLC) flash,

it requires stronger multi-bit correcting ECC like BCH code or Reed-Solomon code

instead of single error correctable double error detectable (SECDED) Hamming code

which is widely used in SLC. The storage and calculation overhead of ECC depends

on the level of protection that is desired.

2.1.2 Scrubbing

ECC can be used to correct/detect errors only when data is accessed. In order to

protect data that may not be frequently accessed in normal workloads, data on the

SSD are actively scanned and errors found are scrubbed. Data scrubbing [49,54] can

be done during the idle periods of the SSD. Scrubbing rate can be either constant

or exponentially distributed. In general, a large portion of data on the SSD are

cold data and this makes scrubbing essential for data protection though it consumes

energy for scanning the device.

2.1.3 Wear-leveling and garbage collection

The SSD blocks have to be erased before they can be rewritten. If blocks are

overwritten with new data, hot blocks will wear out some locations faster than the

rest of the device. The FTL tries to spread the writes over the entire device such

that all the blocks wear out uniformly, in order to increase the lifetime of the device.

Erase operations of SSD operate in units of a block, for example, 512KB, while write

operations are done in units of a page, 4KB. Consequently, a number of valid pages

8

alive in a block have to be moved to another block before an erase. This recycling

process is called garbage collection.

2.1.4 Write amplification

The protection schemes discussed in this section generate undesirable additional

writes. This write amplification has been a just minor overhead to HDDs. On the

other hand, for SSDs, the write amplification severely degrades reliability of devices,

since the reliability is highly dependent on the number of writes issued to the SSD.

Main sources of the write amplification are discussed in this section.

2.1.4.1 Garbage collection

NAND flash memory is typically written in a unit of a page, 4 KB, and erased in

a unit of a block, e.g., 512 KB. It does not support in-place update and accumulates

writes in a log-like manner. In such a log structured system, internal fragmentation

and the garbage collection process to tidy the fragmented data are inevitable. The

garbage collection process moves valid pages from one place to another place and this

results in increasing the number of writes issued to the device. Write amplification

due to garbage collection is dependent on the space utilization of the SSD. When

the SSD is nearly full, garbage collection initiates quicker and results in being less

efficient since a larger fraction of the blocks are still live.

Different algorithms are employed for garbage collection. These algorithms try

to minimize the write amplification, for example, through selection of appropriate

blocks with the least number of live pages and postponing garbage collection as long

as possible. Write amplification due to garbage collection is strongly dependent on

the space utilization of the SSD [24]. When the SSD is nearly full, garbage collection

initiates quicker and results in being less efficient since a larger fraction of the blocks

are still live.

9

Error?	

Read	 a	 page	

ECC	 check	

Read	 done	

Correctable?	 Failure	

Correct	 errors	

Write	 page	

No

Yes No
Yes

Read Request

Figure 2.1: Write amplification from recovery process

2.1.4.2 Recovery process

Data recovery can be initiated due to ECC level error detection. In most of the

recovery processes, at least one write is required to write corrected page back to the

device. Figure 2.1 describes the process of write amplification from recovery process.

This write amplification is inevitable and the number of amplified writes is highly

dependent on page inspection rate. The term write amplification is known to be

caused only by writes; however, we show that reads also lead to write amplification.

This has a significant effect on the SSD’s lifetime in modern computing environment

where reads can be dominant compared to writes.

Figure 2.2 compares the traditional point of view of write amplification on the left

side, where only writes amplifies writes, to our point of view of write amplification

on the right side, where both reads and writes contribute to write amplification. In

the figure, wecc represents the write amplification from ECC recovery process, and

fecc is the fraction of the reads with an error detected by the ECC.

10

Figure 2.2: Write amplification from different point of views

ECC can correct a number of errors in a page simultaneously and it results in only

one write. For instance, fixing a bit error in a page takes one redundant write, while

fixing ten bit errors in a page also needs one additional write. Therefore, intensive

recovery makes an SSD robust as well as it amplifies writes and hurts the device,

making the design of a recovery process challenging.

Read-after-write mechanism is a popular technique to protect an SSD from write

errors. Whenever write operation is done to a page, correctness of write is confirmed

by reading the page immediately after write. It rewrites the page if write errors are

detected in the page which leads to further write amplification.

2.2 Reliability model

We build a reliability model and analyze the various factors affecting the life-

time of an SSD. While there have been many studies on the reliability analysis of

SSDs, to the best of our knowledge our work here provides the first model for SSDs

considering write amplification. In this section, we assume that workload is random

and uniformly distributed over the entire device such that the page access rate is

11

Error Type A B
Read disturb (per 1-1,000 reads) 7.73e-7 2.17e-4

Data retention (per month) 3.30e-6 1.83e-4
Write error (per write) 1.09e-7 3.01e-4

Table 2.1: Raw bit error rate λ(x) = A · e(B·x)

constant on an average.

2.2.1 Raw bit error rate

According to many studies [5, 19, 58, 61, 62] on the behavior of flash memory,

there are different sources of bit errors: read disturb, data retention failure, and write

failure (write error). These studies model the bit error rate as an exponential function

of the number of program/erase cycles (P/E cycles) the cell has gone through. We

start with the assumption that bit errors are independent and their probabilities are

exponentially distributed, and then we employ the data from the measurement study

of [58] to model the rate of change of bit error rate. Table 2.1 shows the employed

model. λ(x) is the raw bit error rate at x P/E cycles.

Write error is immediately recovered by read-after-write mechanism of SSD; how-

ever, the recovery process requires extra write operation to write corrected data back

which wears out the SSD faster. In this section, we assume that read-after-write

scheme is not operational if it is not specified.

Read disturb error rate is a function of both P/E cycles and the number of

reads on neighbors [58]. The number of read operations done to neighbors, k, can be

estimated as a function of read ratio in the workload (R) and the number of neighbor

pages (n):

12

k =
∞∑
i=0

pi · E(i, R, n)

=n ·R/(1−R2)

(2.1)

where pi is the probability of being read i times repeatedly without updating the

target page, and E(i, R, n) is the expected number of valid pages when the target page

is read i times. By the time a page is accessed for the first time, R · n neighboring

pages are expected to be read. A neighboring page that is written will be stored

elsewhere and that physical neighbor becomes invalid. If the second access to a page

is also a read (with a probability R2), it is expected R2 ·R ·n neighboring pages would

be read in that time. Likewise, we can estimate the number of additional reads when

the page is read i times repeatedly. In the equation, the probability of a page being

read i times is pi = Ri, and the expected number of additional read operations done

to neighbor pages when the page is read i times is E(i, R, n) = R · E(i− 1, R, n).

While read disturb error rate is expected to grow with the number of reads, the

data in [58] shows that this error rate is nearly constant for the first 1,000 reads.

Our evaluations are done within the range. For example, k is 218 when n is 127 (the

number of pages per block is 128), and R is 0.75 (Read:Write=3:1)

2.2.2 Uncorrectable page error probability

ECC can correct errors up to a certain number of bits in a page. When higher

number of bit errors occur within a page, the page fails or other techniques such as

RAID have to provide data protection.

As shown in Figure 2.3, a canonical Markov model is typically used to build a

statistical model of reliability of ECC for a page. In the figure, E is the number of

correctable errors, S is the number of bits per page, λ(x) is the bit error rate at x

P/E cycles from the model of Section 2.2.1, and µ is the page recovery rate. The

13

0	 1	 2	 E	 N+1	 A	 …
𝑆𝜆(𝑥) (𝑆−1)𝜆(𝑥) (𝑆−2)𝜆(𝑥) (𝑆−3)𝜆(x) (𝑆−𝐸+1)𝜆(x) (𝑆−𝐸)𝜆(𝑥)

µμ

… N	

(𝑆−3)𝜆(x)

Figure 2.3: A Markov model of uncorrectable page error probability I

recovery rate is in fact the average page access rate, since the access interval time for

the same page is much higher than ECC correction time. State A is the absorbing

state where the number of errors exceed what ECC can correct and hence results

in a page failure at the device level. From an analysis of the Markov model the

probability of reaching the absorption state A can be obtained.

The bit error rate varies with the number of P/E cycles and it can be considered

by modeling a series of Markov models with different bit error rates. We assume

that the time varying nature of λ(x) is relatively small because our raw bit error

rate model increases error rate by about only 0.02% per P/E cycle. Also, we assume

that the average time per P/E cycle is sufficiently large so that the Markov model

converges in each P/E cycle. Since wear-leveling scatters write and erase operations

over the whole device, an average time per P/E cycle is approximately the amount

of time taken to write the whole device once. Under those assumptions, we can treat

λ(x) as constant at each P/E cycle x in the series.

We can estimate the uncorrectable page error rate at each P/E cycle using a

steady state analysis of the Markov model. From the analysis, the probability of

reaching the state A can be obtained.

14

2.2.3 Mean time to data loss

Since perfect wear-leveling is assumed, erases are uniformly spread out over the

entire SSD; statistically, for an SSD of N pages, N writes to the device is equivalent to

one write to each page on average. Therefore, the mean time to data loss (MTTDL)

of the device is:

MTTDLd =
MTTDLp · N

N
(2.2)

where MTTDLp is the MTTDL of a page shown in the following equation.

MTTDLp = lim
k→∞

k∑
j=1

jg(j)
j−1∏
i=1

(1− g(i))

 (2.3)

2.2.4 Write amplification

Write amplifications are caused by garbage collection, recovery process and read-

after-write which are denoted as αgc, αrcv and αraw. These write amplifications

increase the bit error rate and hence increase the uncorrectable page error probability

and impact the data lifetime.

αgc is dependent on space utilization and the range of it is estimated to range

from 1.0 to 4.9 according to a recent study in [24].

αrcv is estimated as

αrcv =

(
µ

N∑
i=1

Pi

)
/w (2.4)

where µ is the page recovery rate, w is the average write workload to a page and

Pi is the probability of staying at state i of Markov model in Figure 2.3 in Section

2.2.2.

15

0	 1	 2	 E	 3	 A	 …
𝑆𝜆(𝑥) (𝑆−1)𝜆(𝑥) (𝑆−2)𝜆(𝑥) (𝑆−3)𝜆(𝑥) (𝑆−𝐸+1)𝜆(𝑥) (𝑆−𝐸)𝜆(𝑥)

(1−𝑒)𝜇

w

𝑒𝜇

Figure 2.4: A Markov model of uncorrectable page error probability II

When write errors are considered and read-after-write mechanism is turned on,

recovery process of read-after-write produces extra writes. Figure 2.4 shows the

model of uncorrectable page error probability considering write errors and read-

after-write mechanism.

In the figure, e is the probability of write error occurring. S is the number of

bits per page, λ(x) is the bit error rate at x P/E cycles from the model in Section

2.2.1, µ is the page recovery rate, E is the number of correctable bits by ECC and

A represents an absorbing state when errors cannot be recovered by ECC. Write

amplification from read-after-write αraw is shown in the following equation.

αraw =

(
e · µ ·

N∑
i=1

Pi

)
/w (2.5)

We assume that the sources of write amplification work independently and overall

write amplification is α = αgc·αrcv ·αraw. In practice, they do not work independently,

for example, while moving live pages for garbage collection, errors in the pages can

be detected and corrected. We consider their dependency in Section 3.

The write amplifications are emulated by changing sampling of error probability

function. Let g(x) be an uncorrectable page error probability after x P/E cycles and

16

α = 1.3, then new error probability g′(x) = g(1.3x).

2.3 Evaluation

Various aspects of the expected lifetime of SSD are explored in this section. This

includes lifetime changes under the consideration of ECC, scrubbing, device usage

patterns such as space utilization and hot/cold dichotomy. As mentioned above,

we exploited bit error rate mainly from [58], specifically 3x nm memory with the

employment of 61-bit correctable (out of 4KB page) error correction code.

2.3.1 Practical issues

We built a reliability model for SSD in Section 2.2. When we evaluate this model,

we are confronted with many practical issues.

2.3.1.1 Relative MTTDL

We evaluate the lifetime of SSD and normalize by the lifetime of reference device.

For example, if the reference device’s MTTDL is 1.5 years, and the evaluated device’s

MTTDL is 0.5 years, the normalized lifetime of the device is given as 0.33. We

expect this to focus our attention on the relative strengths of various protection

schemes, rather than the absolute lifetimes which are dependent on memory vendor.

The reference device is set to be protected by 61-bit correctable ECC without any

degradation from write amplification.

2.3.1.2 Environment

As we show later, the results are dependent on the space and throughput utiliza-

tion of SSD. Unless otherwise mentioned, the results assume a space utilization of

0.5 and throughput utilization of 0.5. Specifically, we assume that capacity is 80GB,

maximum throughput is about 120MB/s and read:write ratio is 3:1. The P/E cycle

in time is about 80 minutes per page on average under the considered workload. Note

17

read:write 5000 10000 15000 20000 25000 30000
1:1 1.0302 1.0839 1.2125 1.4430 1.7011 1.8738
3:1 1.0308 1.0889 1.2475 1.6287 2.3165 3.0930
5:1 1.0309 1.0899 1.2560 1.6862 2.5968 3.9032
7:1 1.0310 1.0904 1.2598 1.7142 2.7571 4.4806
9:1 1.0310 1.0906 1.2619 1.7308 2.8609 4.9130

Table 2.2: Write amplification from ECC recovery at different P/E cycles

that these are arbitrary choices, and we vary some of these to study the sensitivity

of results to these values. We assume that the TRIM command is being issued by

the operating system whenever data is deleted on the device.

2.3.1.3 Sources of failure

Sources of bit errors evaluated in this section are read disturb and retention fail-

ure. Write failure errors are also evaluated, however, the result is not included if not

specified since read-after-write mechanism can recover the write failure immediately

and we find that its effect on lifetime of SSD is negligibly small. Other sources such

as whole device failure and software errors are modeled in Section 3.

2.3.2 Sources of degradation

We look at the relative contribution to the loss of lifetime resulting from the

various sources of write amplification.

2.3.2.1 ECC recovery

Table 2.2 reveals the relationship between workload and write amplification from

ECC recovery. The amount of write workload is fixed and the read workload is varied

based on the read:write ratio. The higher read:write ratio implies higher recovery

rate from higher read rates and, hence, higher number of writes for recovery.

To analyze how much write amplification is harmful to lifetime, we evaluated the

18

0	

0.2	

0.4	

0.6	

0.8	

1	

ref
ere
nc
e	

W.
A.(
GC
)	

W.
A.(
GC
+E
CC
)	

0%
	 sc
rub
	

25
%	
scr
ub
	

50
%	
scr
ub
	

10
%	
u;
l	

30
%	
u;
l	

50
%	
u;
l	

70
%	
u;
l	

90
%	
u;
l	

10
0	 t
o	 1
00
	

80
	 to
	 50
	

80
	 to
	 20
	

Figure 2.5: Impact of various factors on lifetime (Relative MTTDL)

lifetime of SSD. Figure 2.5 shows the impact of various factors on lifetime. When

the write amplification from garbage collection is considered, the lifetime of a single

SSD decreases by 20%. The write amplification from ECC recovery contributes to a

loss of additional 30% of the lifetime. This shows the importance of devising data

protection techniques that are less write intensive.

2.3.2.2 Scrubbing

Scrubbing is well-known to be useful for seldom referred blocks. For HDDs,

scrubbing is beneficial if it works in the background and does not interfere with

foreground I/O requests. However, for SSDs, intensive scrubbing may be harmful due

to write amplification. The impact of scrubbing on lifetime of SSD is shown in Figure

2.5. We have investigated what exactly causes this degradation, and found that page

error rate is increased by write amplification from frequent ECC recovery than it is

reduced by higher recovery rate. Though our evaluation cannot find benefit from

scrubbing SSDs in this section, we cannot argue that scrubbing is always harmful.

19

2.3.2.3 Garbage collection (space utilization)

Write amplification from garbage collection is highly dependent on space uti-

lization and hot/cold distribution of data. Their impact on the lifetime of SSD is

discussed here.

The amount of write amplification is strongly related to space utilization. Earlier

work has studied the relationship between write amplification from garbage collection

and space utilization [24]. We exploit this relationship to see the impact of space

utilization on lifetime of SSD.

Figure 2.5 shows the change of lifetime as a function of space utilization. As we

expected, lifetime is less at higher utilizations due to garbage collection. For example,

increasing space utilization from 10% to 50% (increasing the amount of data by 5

times) results in 10% of loss in data lifetime, while increasing utilization from 50%

to 90% (increasing the amount of data by 1.8 times) results in about 62% of loss in

data lifetime. It is possibly better to employ new devices and keep the utilization at

50% even though more number of devices results in higher error probability, which

is proportional to the number of devices. It is better to employ new devices and

keep utilizations lower to maintain high data lifetimes. This observation motivates

the study in Section 3 which investigates the relationship between space overhead of

parity protection and the number of SSDs in an SSD array.

2.3.2.4 Read-after-write

Write failure (write error), in addition to read disturb error and data retention

error, is one of three major sources of bit errors in SSD; however, write errors can be

simply detected and corrected by read-after-write mechanism as described in Section

2.2.4. The Markov model in Figure 2.4 is evaluated in Figure 2.6. It shows that write

amplification due to read-after-write reduces lifetime by less than 3% when write error

20

10
−4

10
−3

10
−2

10
−1

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

Write error probability(%)

R
e

la
ti
v
e

 M
T

T
D

L

No Read After Write

Read After Write

Figure 2.6: Read-after-write mechanism

probability is about 0.1% which is impractically high. In this section, write error is

not considered and read-after-write mechanism is assumed to be turned off.

2.3.2.5 Hot/cold dichotomy

In real systems, data exhibit hot and cold behavior, where a few blocks receive

significant fraction of requests while other blocks receive a smaller fraction of requests.

We assumed that wear-leveling works well enough such that access rates for hot and

cold blocks are fair over long time scales; however, in a short timescales, hot blocks

are more likely to be overwritten, which results in more page invalidations before

they are reclaimed. Due to this behavior of hot and cold blocks, garbage collection

can gather invalid pages more efficiently by reclaiming hot blocks more often and

this results in less write amplification.

We employed data about write amplification from the work in [9] which reveals

the relationship of write amplification to hotness of data. The evaluation result is

21

shown in Figure 2.5. In the figure, x to y means x% of throughput is concentrated

on y% of space. Space utilization is set to 90% in this evaluation since the work

in [9] provides results of 85% and 90% of space utilization. The result shows that

hot blocks increase lifetime of SSD because of more efficient garbage collection.

2.4 Threshold based ECC

Our analysis showed that, given sufficient workload intensity, most errors within

a page are corrected rapidly so that only a few bit errors accumulate before an ECC

action corrects and writes that page back to the SSD. Table 2.3 shows the probability

distribution of the number of bit errors (n) when a page is accessed. When bit errors

are found (1 ≤ n), the bit errors are corrected by ECC recovery. For example, at

25,000 P/E cycles, about 83% (0.5824 / (1.0 - 0.3013)) of ECC recovery corrects less

than or equal to 5 bit errors in 4 KB page while only 17% of ECC recovery corrects

more than 5 bit errors in a page. As pointed out earlier, the writes from ECC can

decrease data lifetimes. To avoid the disadvantage of extra writes of ECC recovery,

we propose threshold based ECC correction. In this scheme, data is corrected by

ECC and the correct data is returned to the requesting process, but the corrected

data is not written back to the SSD until the number of bit errors within the page

reach a threshold.

In other words, new scheme leaves page errors uncorrected on the device until the

number of bit errors exceed some threshold. For instance, with 200MB/s workload

at a 80GB SSD, 10−7 bit error rate means about one bit error is detected/corrected

on average within a 4KB page when that page is accessed. Threshold based ECC

correction waits until 10, 20, or a certain number of bit errors are accumulated, and

then corrects the data to reduce the number of extra writes. As Table 2.3 shows,

most of the bit errors are corrected before a page accumulates a significant number of

22

n 5000 10000 15000 20000 25000
n = 0 0.9705 0.9176 0.7904 0.5605 0.3013
n = 1 0.0286 0.0756 0.1657 0.2463 0.2105

1 ≤ n ≤ 3 0.0295 0.0823 0.2077 0.4022 0.4604
1 ≤ n ≤ 5 0.0295 0.0824 0.2096 0.4323 0.5824
n ≥ 5 6.57e-10 3.12e-7 8.50e-5 0.0072 0.1163

Table 2.3: Probability distribution of the number of bit errors (n)

Error?	

Read	 a	 page	

ECC	 check	

Read	 done	

Correctable?	 Failure	

Write	 page	

No

Yes
Yes

Yes

No

No

Read Request

>	 N	 ?	

Correct	 errors	

Figure 2.7: Write amplification and threshold based ECC

errors. Our new scheme significantly reduces write amplification from ECC recovery,

since considerable portion of write amplification comes from repairing one or few

errors rather than many errors at once.

Figure 2.7 describes how threshold based ECC works. For read requests to a

page, threshold based ECC delays writing the corrected data on to the device until

bit errors within the page reach a threshold of N .

Figure 2.8 shows a Markov model of a page when threshold based ECC is em-

23

0	 1	 2	 E	 N+1	 A	 …
𝑆𝜆(𝑥) (𝑆−1)𝜆(𝑥) (𝑆−2)𝜆(𝑥) (𝑆−3)𝜆(x) (𝑆−𝐸+1)𝜆(x) (𝑆−𝐸)𝜆(𝑥)

µμ

… N	

(𝑆−3)𝜆(x)

Figure 2.8: A Markov model of uncorrectable page error probability III

Threshold (the number of bits) 0 6 18 30 42 54
Relative MTTDL 0.496 0.614 0.671 0.694 0.702 0.696

Table 2.4: Relative MTTDL of threshold based ECC

ployed.

In the figure, S is the number of bits per page, λ(x) is the bit error rate at x

P/E cycles from the model in Section 2.2.1, µ is the page recovery rate, N is the

threshold, E is the number of correctable bits by ECC and A is a state when errors

cannot be recovered by ECC.

Table 2.4 shows an evaluation of threshold based ECC. A threshold of x means

that ECC related writes are skipped until the accumulated bit errors in the page

reach x out of 61 correctable bits by ECC within the page. Since leaving too many

errors produces drastic growth of page error rate, there exists an optimal number

for the threshold. Table 2.4 shows that leaving about 70% of correctable errors,

42 bit errors in a 4KB page, with 61-bit ECC is optimal. The optimal threshold is

expected to be a function of the bit error rate and the page access rate and the power

of the employed ECC. Deriving an optimal threshold as a function of these variables

remains an open problem.

In this section, we made a number of assumptions to make the analysis tractable.

Some of these assumptions are relaxed in Section 3.

24

3. SYSTEM LEVEL PROTECTION SCHEMES I: PARITY PROTECTION*

In the previous section, we explored different aspects of device level protection

schemes such as ECC, wear leveling, and garbage collection. In this section, we will

mostly focus on one of the system level protection schemes: parity protection such

as RAID5 and mirroring.

We focus our attention on the reliability of an array of SSDs. We explore the

relationship between parity protection and the lifetime of an SSD array. We make

the following significant contributions:

• We analyze the lifetime of SSD taking benefits and drawbacks of parity pro-

tection into account.

• The results from our analytical model show that RAID5 can be less reliable

than striping with a small number of devices because of write amplification.

• Our results show that RAID5 is effective at improving lifetime in large arrays

and in small arrays with lower space utilizations and less intensive workloads.

• We explore device parameters that can improve lifetime and find effective con-

figurations improving data lifetimes in SSD arrays.

Section 3.1 provides a background of system level parity protection and write

amplification of SSDs. Section 3.2 explores SSD based RAID. Section 3.3 builds a

reliability model of SSD based RAID. Section 3.4 describes our simulator to estimate

the lifetime of an SSD. Section 3.5 presents results from our analytic model.

* Part of this section is reprinted with permission from Sangwhan Moon and A.L.N. Reddy, Does
RAID Improve Lifetime of SSD Arrays?, in ACM Transactions on Storage (accepted), c©2015 ACM.

25

3.1 System level protection schemes

In many cases, device level protections are not enough to protect data. For

example, when the number of bit errors exceeds the number of correctable bit errors

using ECC, data in a page may be lost without additional protection mechanisms. A

device can fail due to other reasons such as the failure of device attachment hardware.

In this section, we call the former as a page error and the latter as a device failure.

In order to protect SSD arrays against device failures, system level parity protection

is employed.

3.1.1 Parity Protection

RAID5 is popular as it spreads workload well across all the devices in the device

array with relatively small space overhead for parity protection. The group of data

blocks and the corresponding parity block is called a page group. RAID5 is resilient

to one device failure or one page error in a page group.

Mirroring is another popular technique to provide data protection at the system

level. Two or more copies of the data are stored such that a device level failure does

not lead to data loss unless the original and all the replicas are corrupted before the

recovery from a failure is completed. When the original data is updated, the replicas

have to be updated as well. Read operations can be issued to either the original or

the replicas at the system level. When a device is corrupted, the replicas are used

to recover the failed device.

3.1.2 Write amplification

Protection schemes for SSD often require additional writes and those writes in

turn reduce the reliability of SSDs. Since higher write amplification can reduce

the lifetime of SSD severely, protection schemes should be configured carefully to

26

maximize the lifetime improvement while minimizing write amplification. Write

amplification severely degrades reliability, since the reliability is highly dependent

on the number of writes done at the SSDs. Main sources of the write amplification

are discussed in this section.

3.1.2.1 Recovery process

As discussed in Section 2.1.4.2 in Section 2, in most of the recovery processes, at

least one write is required to write a corrected page. ECC can correct a number of

errors in a page simultaneously with one write. For instance, fixing a bit error in a

page takes one redundant write, while fixing ten bit errors in a page also needs one

additional write. It is noted that ECC based write amplification is a function of read

workload unlike other sources of write amplification.

3.1.2.2 Garbage collection

As discussed in Section 2.1.4.1 in Section 2, garbage collection amplifies the num-

ber of writes in SSDs and the write amplification due to garbage collection is depen-

dent on the space utilization of the SSD. Recent study [10] reveals that the efficiency

of garbage collection is also dependent on the hotness of data. Since hot data tends

to be more frequently invalidated, garbage collection can be more efficient when hot

workload concentrates on a small portion of data.

3.2 SSD based RAID

When data is distributed across many devices, the failure of any device can

lead to data loss. As the number of devices increases, the failure rate increases and

lifetime decreases, without additional measures for protecting data. To overcome this

limitation, RAID is widely used in storage systems. Due to physical characteristics

of SSD, RAID architecture needs to be modified for SSD based storage systems. Our

27

Figure 3.1: RAID architecture of an SSD array

analysis is based on an architecture shown in Figure 3.1 where a RAID controller

operates on top of a number of SSDs. As a result, the set of pages within a page

group have a constant logical address (before FTL translation) within the device.

As the pages are written, the actual physical addresses of pages within the device

change because of FTL translation. However, this does not impact the membership

of the page group, based on the logical addresses. When the number of page errors

in a page group exceeds the number of correctable page errors by RAID, the page

group fails and the storage system loses data.

In RAID5, for a small write, the data block and the parity block need to be

updated, potentially resulting in a write amplification factor of 2. However, when a

large write that spans a number of devices is issued, the parity block can be updated

once for updating N − 1 data blocks, where N is the number of devices in the device

array, resulting in a write amplification factor of N/(N − 1). Depending on the

workload mixture of small and large writes, the write amplification will be between

N/(N − 1) and 2. In a mirroring system, the write amplification is 2 regardless of

the size of the write request.

Parity pages increase space utilization. Suppose that 120 GB of data is stored in

28

four 80 GB SSDs, RAID5 stores 30 GB of data and 10 GB of parity in each device

while striping stores only 30 GB data per device. The increased amount of space

utilization results in less efficient garbage collection and higher write amplification,

which decreases the lifetime of SSDs.

It is possible to write to the array one stripe at a time to reduce parity update

costs. However, this requires garbage collection to consider one stripe at a time,

and not a block at a time within a device, requiring coordination across the devices.

While this is possible when a RAID controller is built on top of raw flash memory,

this is not feasible when building RAID on top of SSDs. In this section, we consider

an array built on top of SSDs.

Additional measures can be employed to improve reliability. In order to protect

data that may not be frequently accessed in normal workloads, data on the SSDs are

actively scanned and errors found are scrubbed. Data scrubbing [49,54] can be done

during the idle periods of the SSD array. Scrubbing rate can be either constant or

exponentially distributed. When a large portion of data on the SSD are cold data,

scrubbing is essential for data protection though it consumes energy for scanning the

SSD.

3.3 Lifetime model

In this section, we show a lifetime model based on a Markov model of Section 2.

A number of symbols used in our model are shown in Table 3.1.

3.3.1 Uncorrectable page error rate

We employ a Markov model in Figure 3.2 to build a model of reliability of a page.

In the figure, labels of states are the number of bit errors in a page, and K is the

number of correctable bit errors by ECC. Bit errors accumulate within a page at a

rate of (S − i) · λ(x), where S is the number of bits per page, i is the number of

29

Symbols Description (G.C. stands for garbage collection)
k the expected number of reads done to neighboring pages
R the portion of reads in workload
W the portion of writes in workload
S the number of bits in a page
K the number of correctable bit errors by ECC (per page)
λ(x) raw bit error rate at x P/E cycles
g(i, x) page access rate by G.C. (page has i bit errors at x P/E cycles)
µ page access rate by workload
µr page access rate by read workload
µw page access rate by write workload
FE (state) page error: ECC cannot recover the corrupted page
N the number of devices in an SSD array
ν(x) uncorrectable page error rate at x P/E cycles
ν(i)(x) ν(x) of the ith replaced device.
d device failure rate
ξ page group recovery rate
η device recovery rate
vi (state) a page is corrupted (i: device replacement count)
di (state) a device is corrupted (i: device replacement count)
FR (state) data loss: RAID cannot recover the system
σ(x) data loss rate at system level
p(x) the probability of data loss at x P/E cycles, induced by σ(x)
w the number of writes issued per page per second
tw the average time to write whole storage system once
Pi the probability of staying at state i in a Markov model
P (x) the probability of seeing the first data loss at x P/E cycles
us device space utilization
T the number of pages in a device
a over-provisioning factor, a = 1/us
B the number of pages per block
Mv the number of blocks full of valid pages found in G.C.
mv the probability of a block full of valid pages found in G.C.
AF the write amplification from G.C. with FIFO policy
AF ′ the write amplification from G.C. with modified FIFO policy
AG the write amplification from G.C. with Greedy policy

AF (a, r, f) AF , a:over-provisioning (a), r:hot workload, f:hot space
AG(a, r, f) AG, a:over-provisioning (a), r:hot workload, f:hot space

q average write length in pages
W exponential random variable of write length with average q

Table 3.1: List of symbols used in analysis models

30

Markov model of UPER

0 1 2 K FE…

Figure 3.2: A Markov model of page error rate

errors accumulated in a page, and λ(x) is the raw bit error rate at x P/E cycles.

Once a state gets to the state FE, bit errors cannot be recovered by ECC and it

results in page error. ECC detects and corrects bit errors at page recovery rate µ.

The recovery rate µ is a function of page access time (or error detection time) t1 and

page recovery time t2:

µ =
1

t1 + t2
(3.1)

Like the page model in Section 2, we employ a series of Markov models with

different bit error rates. The same assumptions are valid; the time varying nature

of λ(x) is small enough and the average time per P/E cycle is sufficiently large such

that the Markov model converges in each P/E cycle. Under those assumptions, we

can treat λ(x) as constant at each P/E cycle x in the series.

From a steady state analysis of the Markov model, the probability of reaching

the state FE can be obtained.

The write amplifications from various sources are not independent of each other.

For example, when garbage collection process moves valid pages to empty space

in another block, bit errors in the pages are corrected by ECC during the move

operation. We take such dependencies into account in our model. Each state of

31

Markov model in Figure 3.2 has its own probability of recovery by garbage collection.

The garbage collection recovery rate g(i, x) highly depends on garbage collection

policy adopted.

3.3.2 Data loss rate

The reliability of an SSD array (RAID5) can be modeled through a Markov model

shown in Figure 3.3.

There are mainly two sources of page error. Bit errors accumulate and result in a

page error. The entire device can fail by various sources such as attached hardware

error, software error, and human error. The device failure leads to the failure of all

the pages in the device.

Figure 3.3 shows the Markov model for a RAID5 system. Two sources of failure

are considered in this model. Bit errors accumulate and result in a page error. The

page error results in data loss unless detected and corrected before another page

error in the same page group or a device failure occurs. The device failure can lead

to the failure of all the pages in the device. The device failure results in data loss

when a page error in another device or another device failure occurs.

This is the list of cases when permanent data loss can occur:

1. Page error + page error in the same page group.

2. Any page error + device failure.

3. Device failure + any page error in another device.

4. Device failure + another device failure.

In Figure 3.3, case (1) and (2) are considered in the upper chain (from state i to

vi and then FR) of the Markov model, and (3) and (4) are considered in the lower

chain (from state i to di and then FR).

32

0

v0
FR

d0 1

v1
FR

d1 . . .

Figure 3.3: A Markov model of RAID5 system

It is noted that device failures are easier to detect and a recovery operation can

be issued immediately soon after the failure. However, the device recovery time is

considerably long. On the other hand, a page error is not detected until that page is

read. However, a detected page error can be recovered quickly. Our analysis takes

these issues into consideration with different value of ξ and η.

The reliability of SSD is highly dependent on the number of writes it has serviced.

The Markov model in Figure 3.3 considers the number of device replaced after device

failure recovery. The replaced devices have experienced relatively lower number of

writes.

The data loss rate σ(x) is the rate of reaching state FR. The time series of these

data loss rate σ(x) is integrated over time to obtain the expected time to data loss.

The data loss rate σ(x) = us ·T · v(x) +d for a single SSD. For N device striping,

σ(x) = N(us ·T ·v(x)+d). Under an assumption that each device pair is independent

in a mirroring system, we can build a Markov model for the device pair, and then

extend it to cover the entire system. The pair fails with a failure rate ρ(x), and the

mirroring system fails at the rate of σ(x) = N/2 · ρ(x).

33

Single SSD : σ(x) = us · T · v(x) + d

N device striping : σ(x) = N(usT · v(x) + d)

Mirroring : σ(x) = N/2 · ρ(x)

(3.2)

3.3.3 Mean time to data loss

We employ the mean time to data loss (MTTDL), which is one of the popu-

lar metrics in reliability analysis. The MTTDL is defined as the expected time to

encounter the first data loss:

MTTDL =

(∞∑
x=1

(xPDL(x))

)
· tw

=

(∞∑
x=1

(
xp(x)

x−1∏
i=1

(1− p(i))
))
· tw

(3.3)

In the equation, p(i) is the probability of data loss at i P/E cycles such that the

probability of seeing the first data loss at x P/E cycles PDL(x) is:

PDL = p(x)
x−1∏
i=1

(1− p(i)) (3.4)

Thus, the MTTDL in Equation (3.3) is the sum of expectation of seeing the first

data loss at a certain P/E cycle over the lifetime of an SSD array.

3.3.4 Write amplification

Write amplification can be caused by garbage collection, ECC recovery, and parity

update which are denoted as αgc, αrcv, and αparity.

3.3.4.1 Garbage collection

The write amplification from garbage collection αgc relies on garbage collection

policy. In this section, we consider two garbage collection policies: First In First Out

34

(FIFO) and Greedy. FIFO policy selects the least recently written block as a victim

for garbage collection, while Greedy policy picks the block with the least number of

valid pages as a candidate for garbage collection. We exploited the result from [10]

to estimate garbage collection rate g(i, x) which is dependent on the write workload.

3.3.4.1.1 FIFO This policy keeps a list of non-empty blocks in order of written

time. We start from the simple case when the workload writes one page per write

and it is random and uniformly distributed. The rate at which blocks are consumed

is given by qAF/B where q is average write length, AF is the write amplification

from garbage collection with FIFO policy, and B is the number of pages in a block.

The write amplification AF is the solution of the following equation. The details are

described in [10].

AF =
1

1− (1− q·a
T

)
T/B

q·AF /B

(3.5)

where T is the number of pages in a device and a is over-provisioning factor.

Real workload can write more than a page per operation, and this generates

consecutive pages which are more likely to be invalidated together. When we write

a large file sequentially and delete the file at once, for example, many blocks will be

full of invalidated pages and garbage collection can get a number of empty blocks,

free of write amplification. On the other hand, a large file can result in a series of

blocks filled with all valid pages. It is unrealistic that FIFO policy selects a victim

block filled with valid pages and move all of the valid pages to somewhere in the SSD

during garbage collection process. (This will not generate empty blocks at all.) We

modify FIFO model to pass over the blocks with 100% valid pages. In the modified

FIFO model, we assume that the write length follows exponential distribution with

average write length q such that the probability of write length is more than x is

35

Large Write

Empty
New write
Old write

j B 2 1 … 2 1 … B 2 1 …

Figure 3.4: An example of a large write

P (W ≥ x) = 1− 1

q
e−

x(N−1)
q (3.6)

Figure 3.4 shows an example of a large write when a write starts from page

number j in the second block. In the figure, two blocks are fully written because of

this one large write request.

As described in the figure, page number in a block starts from B and decreases

to 1 as writes continue. When a write with size W starts at location j of a block, n

blocks will be written fully with valid pages when (n + 1) · B ≥ W − j ≥ nB. The

expected number of blocks filled only with valid pages is the sum of the expectation

of n blocks being within a write.

∞∑
n=1

n · P ((n+ 1) ·B + j ≥ W ≥ n ·B + j)

=
∞∑
i=1

P (W ≥ i ·B + j)

(3.7)

We assume that a write can start at any page with equal probability 1/B. The

estimated number of blocks full of valid pages is

36

M =
B∑
j=1

1

B

∞∑
i=1

P (W ≥ i ·B + j) (3.8)

In a FIFO queue with blocks sorted by written time, blocks are moving at rate

q ·AF ′/B where AF ′ is the write amplification from garbage collection with modified

FIFO policy. Then, surviving rate S of a block when it gets to the end of FIFO

queue is

S = (1− q · a
T

)
T/B

q·AF ′/B (3.9)

And the number of blocks 100% filled with valid pages when garbage collection

picks the blocks is given by

Mv = M · S (3.10)

And the probability of a block being filled with all valid pages is

mv = Mv/(T/B) (3.11)

Since Mv blocks are passed by garbage collection process, the write amplification

from garbage collection is modified as

AF ′ =
1−mv

1− (1− q·a
T

)
T/B

q·AF ′/B
(3.12)

In this section, we call the modified FIFO as FIFO unless specified.

3.3.4.1.2 Greedy This policy chooses the victim block which has the least number

of valid pages. It reduces the number of redundant writes for moving valid pages,

while it requires additional data structures and operations to keep the information

37

on the number of valid pages in every block.

The write amplification from greedy garbage collection is estimated in Equation

(3.13). In the equation, X0 is the expected number of valid pages in the victim block.

X0 =
1

2
− 2 ·B

a
·W (−(1 +

1

2 ·B
) · a · e−(1+

1
2·B)·a)

AG =
B

B − (X0 − 1)

(3.13)

Most workloads have nonuniform access patterns, where a significant fraction of

the workload may concentrate on a small data space. Let fraction r of the workload

access data in fraction f in space. Then the write amplification is given by

AF (a, r, f) = 1 +
r

e
r
f
· a
A − 1

+
1− r

e
1−r
1−f
· a
A − 1

AG(a, r, f) =
AF ((1 + 1/2 ·B) · a, r, f)

1 + 1/2 ·B

(3.14)

The details of these equations are discussed in [10].

3.3.4.2 ECC recovery

In Section 2, we show that ECC recovery can be one of the sources of write

amplification. When ECC detects and corrects bit errors in a page, the resulting

write is an unintended write resulting from a read request. In Figure 3.2, the amount

of the write amplification from ECC recovery is the ratio of the amount of write traffic

moving the page from states with 1, 2, · · · , K errors to a page with 0 bit errors to

the actual write traffic issued to the device by the user. Equation (3.15) shows the

write amplification.

αrcv =

(
µr ·

K∑
i=1

Pi

)
/w (3.15)

In Section 2, we have suggested threshold based ECC (TECC) to reduce the

38

Markov model of UPER (TECC)

0 1 2 KN FE… N‐1 N+1 …

,

,

Figure 3.5: A Markov model of page error rate with TECC

write amplification from frequent ECC recovery by leaving bit errors in a page until

it accumulates a certain number of bit errors. TECC can drastically reduce the write

amplification from ECC recovery.

The Markov model of page error rate in Figure 3.2 is modified as Figure 3.5 when

TECC is employed. In the model, the write amplification from ECC recovery is

αrcv =

(
µr ·

K∑
i=N

Pi

)
/w (3.16)

where N is a threshold and bit errors are left in storage media until the number

of bit errors exceeds the threshold.

3.3.4.3 Parity update

As discussed in Section 3.2, the write amplification from parity update depends

on workload characteristics and is somewhere in between N/(N − 1) and 2. The

number of parity updates depends on an average on the length of write requests.

Figure 3.6 shows an example of writing 6 pages from the 4th page in the page group

1 in an SSD array with 8 SSDs, which results in 2 parity page updates and the write

39

Large Write
EmptyNew write

Old write

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Parity

Page group 1

Page group 2

Figure 3.6: A large write over RAID5

amplification of 1.33. When the write starts from the 1st page, however, the resulting

parity update is 1 and the write amplification will decrease to 1.16.

In general, when workload starts to write q pages from ith page in a page group,

the number of parity update is d(q + i− 1)/(N − 1)e when the average write length

is q. 1 The average number of parity update qp is:

qp =
1

N − 1
·
N−2∑
i=0

d q + i

N − 1
e (3.17)

And the write amplification from parity update is

αparity = 1 +
qp
q

(3.18)

Note that the write amplification from parity protection comes from two ways.

The first is the write amplification from parity update, and the second comes from

increased space utilization because the write amplification from garbage collection

αgc increases as the space utilization increases.

1 dxe is the smallest integer number larger than or equal to x.

40

3.3.4.4 Write amplification and lifetime

The write amplifications from ECC recovery and garbage collection are not inde-

pendent. When garbage collection process picks a block with a page with many bit

errors, ECC can detect and correct the bit errors while garbage collection moves the

page to empty space for free of additional writes. We count it as write amplification

from garbage collection, not from ECC recovery. Thus, the write amplification from

garbage collection is

αgc =
K∑
i=0

(g(i, x) · Pi) /w (3.19)

where g(i, x) comes from AF , AF ′ , AG, AF (a, r, f), and AG(a, r, f) depending on

garbage collection policy and hot/cold characteristics of workload and space.

Device level ECC recovery and system level parity update are independent. ECC

recovery does not require parity update and vice versa. But garbage collection de-

pends on the amplified writes from parity updates and ECC recovery:

α = (αrcv + αparity − 1.0) · αgc (3.20)

The write amplification is modeled by factoring the additional writes and their

impact on the data loss rate σ(x) experienced at the devices.

3.4 Simulation

We built a simulator which takes bit error behavior of SSDs into account. The

simulator estimates the lifetime of SSDs under different workloads. Figure 3.7 pro-

vides an overview of our simulator. In the figure, red boxes show processes and blue

boxes show objects.

Workload generator produces I/O requests and sends them to the Device object.

41

Workload Generator

Device

B

Bit Error Estimation

Uniformly distributed Random, R:W=3:1
125KB/s

Device

B B B

RAID Controller

P P P P

FTLPageTable PageTable

Empty block queue

Written block queueB

B B

B

Invalidate

Parity Protection

Write

Garbage Collection

Invalidate old page

write new page

check bit errors

Inform page error

Read

ECC

return empty block

select victim (FIFO)

Figure 3.7: Simulator overview

The type of requests and addresses to read or write are decided following a probability

distribution.

Bit error generator estimates the number of bit errors in the target page that is

read or written. The number of bit errors depends on the amount of time passed

since the last access to the page, erase count of the block where the page resides,

and bit error rate data which is from a measurement study [58].

The Device object manages a number of Block objects and Page objects, and

gives information such as FTL mapping or current status of the block and the pages

for a read/write request.

Write requests invalidate old pages and write new data in empty (erased) pages.

Read requests checks bit errors and call ECC process and the bit errors are corrected

unless the number of bit errors are more than the number of correctable bit errors.

Otherwise, ECC calls parity protection to recover the page error. If the parity

protection fails, the simulation stops and issues a data loss report.

42

When the space utilization of SSD reaches an upper threshold, a garbage collec-

tion process is invoked and the garbage collection process cleans victim blocks until

the space utilization goes below a lower threshold. Garbage collection policy can be

different by the way it picks victim blocks in the written block queue. The garbage

collection process updates erase count of victim blocks when its process completes.

3.5 Evaluation

The lifetime of an SSD array is evaluated in different environments. Various

aspects of SSD arrays are explored.

3.5.1 Simulation environment

We exploited bit error rate mainly from [58], specifically the bit error rate of 3x

nm MLC flash memory. We assume that 61-bit correctable ECC for a 4 KB page

is employed. We assume a constant annual device failure rate of 3% over the device

lifetime based on the survey results in [29]. We consider different device failure rates

later in the section. Each SSD is assumed to have a capacity of 80 GB.

30 GB of data and 125 MB/s of workload, with 3:1 read:write ratio, per device as

a default, are assumed. This allocates the same amount of data and the same amount

of workload to each device. As a result, the total amount of data and workload in an

SSD array is proportional to the number of SSDs. The actual space utilization can

be more than 30 GB due to parity or replication. For example, in a 4-SSD RAID5

system, each SSD has 30 GB of data and 10 GB of parity which results in space

utilization of 0.5 while the space utilization of 4-SSD system with striping is 0.375.

Table 3.2 shows the change in important system environment variables according to

the number of SSDs in an array. Vendors rate devices by maximum amount of data

that can be written to a device per day due to write endurance concerns. For the

devices, we consider in our study here, the workload of 125 MB/s translates into 33

43

SSD count 1 2 4 8 16
Workload (System, MB/s) 125 250 500 1000 2000
Workload (Device, MB/s) 125 125 125 125 125

Data (Striping, System, GB) 30 60 120 240 480
Data (Striping, Device, GB) 30 30 30 30 30

Space Utilization (Striping, Device) 0.375 0.375 0.375 0.375 0.375
Data (RAID5, System, GB) 30 120 160 274 512
Data (RAID5, Device, GB) 30 60 40 34 32

Space Utilization (RAID5, Device) 0.375 0.75 0.5 0.425 0.4

Table 3.2: Simulation environment

device writes per day (DWPD). Enterprise devices are expected and rated to endure

10-50 DWPD [13, 15, 21, 23, 51]. We consider different workload intensities later in

the section.

Greedy garbage collection policy is assumed to be employed unless specified oth-

erwise.

TRIM command issued by operating system indicates to SSD which data is in-

validated. We assume that the TRIM command is exploited with zero overhead.

The device lifetimes vary from model to model and vendor to vendor. In order

to account for these differences, we normalize the lifetime results to the lifetime of

a single SSD in a default environment. We call the normalized lifetime as relative

MTTDL.

3.5.2 Review of analysis of single SSD

Space utilization and the write amplification from garbage collection are strongly

related to the lifetime. Figure 3.8 shows the relationship between space utilization

and the lifetime of a single SSD. It shows an interesting point: the expected lifetime

does not decrease linearly as space utilization increases. When we increase space

utilization from 0.1 to 0.5, the amount of data is five times the original data, with

44

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	

Re
la
%v

e	
M
TT
DL

	

Space	 u%liza%on	 of	 single	 SSD	

Figure 3.8: Lifetime of an SSD vs. space utilization

only 18% loss of lifetime. If we increase space utilization from 0.5 to 0.9, in contrast,

the lifetime decreases by about 70%. The lifetime decreases faster at higher space

utilizations.

3.5.3 Simulation

We built a simulator as described in Section 3.4 to verify our analytic models.

Since lifetime simulation takes considerable amount of time to finish, we verify the

simplest case when garbage collection policy is FIFO and workload is uniformly dis-

tributed. We limit the capacity of SSD to 80 MB with a workload of 128 KB/s/device

which scales the 80 GB capacity and 125 MB/s/device workload for both analysis

and simulation for fair comparison 2.

Figure 3.9 compares the results from analysis to that of simulation. The analytical

model tracks simulation results fairly closely except when space utilization is very

high. The error between the model and the simulation reaches 12% and 30% at

utilizations of 80% and 90%, respectively.

2We use workload of 128 KB/s/device instead of 125 KB/s/device in scale down version and com-
pared it to analytic model with 128 KB/s/device workload, since the unit of read and write
operation is 4 KB. The rest of analytic models assume 125 MB/s/device workload with 30 GB of
data in 80 GB device capacity unless specified.

45

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	

Re
la
%v

e	
M
TT
DL

	

Space	 u%liza%on	 of	 single	 SSD	

Analysis	 Simulator	

Figure 3.9: Simulation vs. analysis result of a single SSD (80 MB, 128 KB/s)

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

Single	 2	 SSDs	 4	 SSDs	 8	 SSDs	 12	 SSDs	 16	 SSDs	

Re
la
%v

e	
M
TT
DL

	

RAID5	 RAID5	 (Simula9on)	 Striping	

Striping	 (Simula9on)	 Single	 Single	 (Simula9on)	

Figure 3.10: Simulation result of SSD arrays (80 MB, 128 KB/s)

We extended the simulator to multiple SSDs to verify our model further. The

results are shown in Figure 3.10. The simulation results are obtained from a scaled

down version of the system. The results show that the analysis is close to the

simulation results at the considered system configuration parameters. In the rest of

the section, we present results from our analysis model.

46

3.5.4 The number of devices

We compare the lifetime of RAID5 to the lifetime of striping for the rest of this

section. Since the write amplification from parity update varies depending on small

vs. large writes, we describe the lifetime of RAID5 as a range from its minimum to

maximum achievable.

We first analyze the impact of write amplification to the lifetime of SSD based

arrays. We vary parameters to find when RAID5 is superior to striping and when

RAID5 may not be so beneficial in this section.

Figure 3.11 compares the lifetime of different systems with varying number of

SSDs. In the figure, the error bar on RAID5 shows the possible range of the lifetime

depending on the range of the write amplification from parity update. The lifetime

of RAID5 is the lifetime write amplification from parity update is 1+N/(2 ·(N−1)).

The results in Figure 3.11 bring out many interesting implications. First, mirroring

3 at 2 SSDs suffers extremely from higher write amplification. Its write amplification

from parity update (or replica copy) is always 2. Its space utilization is twice as that

of striping on 2 SSDs. The lifetime of RAID5 systems grows with the number of

devices. The results show that with less than 8 SSDs the overhead from additional

writes from parity overwhelms RAID5’s reliability benefits.

3.5.5 The amount of data

Since the space utilization of RAID5 is higher than striping due to parity, it

is more sensitive to space utilization than striping. This trend is shown in Figure

3.12. As we increase the amount of data, the lifetime of RAID5 drastically decreases

and eventually its maximal lifetime is less than striping. This implies that the total

amount of data should be less than a certain amount otherwise RAID5 will not

3RAID5 for 2 devices is same as mirroring for 2 devices.

47

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Single	 2	 SSDs	 4	 SSDs	 8	 SSDs	 12	 SSDs	 16	 SSDs	

Re
la
%v

e	
M
TT
DL

	

RAID5	 Striping	 Single	

Figure 3.11: Lifetime of different number of SSDs

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

80	 GB	 160	 GB	 240	 GB	 320	 GB	 400	 GB	 480	 GB	

Re
la
%v

e	
M
TT
DL

	

Total	 amount	 of	 data	 kept	 in	 8	 SSDs	

RAID5	 Striping	

Figure 3.12: Lifetime of 8 SSDs with different amounts of data

be beneficial in terms of reliability. RAID5 is shown to be competitive when the

amount of data is less than 240 GB or space utilization is less than about 40%.

The 400 GB of data is equivalent to 71% space utilization or 40% over-provisioning.

Considering that recent SSDs typically provide over-provisioning from 7% to 20%

(93% to 83% of space utilization), additional measures should be taken to 1) increase

over-provisioning considerably and/or 2) reduce write amplification further.

48

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	

ECC	 TECC	 ECC	 TECC	 ECC	 TECC	 ECC	 TECC	

FIFO	 *Hotness	 (FIFO)	 Greedy	 *Hotness	 (Greedy)	

Re
la
%v

e	
M
TT
DL

	

Life%me	 of	 8	 SSDs	 with	 different	 garbage	 collec%on/ECC	 algorithms	

RAID5	 Striping	

Figure 3.13: Lifetime of 8 SSDs with different garbage collection/ECC algorithms

3.5.6 Garbage collection policy

We exploited analytic model of garbage collection in [10] and extended its FIFO

policy model considering non-uniform writes and write length. Figure 3.13 shows the

impact of different cleaning policies and hotness of workload on data lifetime. With

hot workload hot data blocks can be more efficiently cleaned than cold data blocks.

However, FIFO policy picks cold blocks at a higher probability because of larger

number of cold blocks than hot blocks. As a result, garbage collection efficiency

decreases with hot workload and FIFO policy, while it increases with hot workload

and greedy policy.

In contrast, we can see the data lifetime increases with greedy policy and hot

workload when the space utilization of SSDs is higher as seen in Figure 3.14. In the

figure, space utilization is higher than that in Figure 3.13. Specifically, the amount

of data is 60 GB per SSD instead of 30 GB per SSD in Figure 3.13. The figure

shows that the lifetime of SSD arrays is determined by garbage collection efficiency.

When the space utilization of SSDs is higher, the write amplification from garbage

collection is the dominant source of degradation. The gain from efficient garbage

49

0	

0.2	

0.4	

0.6	

0.8	

1	

ECC	 TECC	 ECC	 TECC	 ECC	 TECC	 ECC	 TECC	

FIFO	 *Hotness	 (FIFO)	 Greedy	 *Hotness	 (Greedy)	

Re
la
%v

e	
M
TT
DL

	

Life%me	 of	 8	 SSDs	 with	 different	 garbage	 collec%on/ECC	 algorithms	

RAID5	 Striping	

Figure 3.14: Lifetime of 8 SSDs with different garbage collection policies

collection is larger than the loss from higher read disturb error rate, and the data

lifetime increases with greedy policy and hot workload.

3.5.7 Advanced techniques

It is noticed that the lifetime gain does not linearly increase as write amplification

decreases. This is because write amplification from various sources are not indepen-

dent. When the number of devices increases, for example, write amplifications from

both parity update and garbage collection reduce at the same time. Moreover, when

parity update overhead decreases, garbage collection rate also decreases and it results

in less write amplification from garbage collection.

Many techniques have been recently proposed to reduce the write amplification.

Among them, we evaluated, in Figure 3.15, threshold based ECC (TECC) which

reduces the write amplification from ECC recovery. As expected, lifetime increases

considerably. When TECC is employed, write amplification from parity update has

a higher impact on the lifetime. As explained in Section 3.3.4.4, reducing write

amplification from ECC recovery makes the influence of write amplification from

parity update relatively larger.

50

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	

Single	 2	 SSDs	 4	 SSDs	 8	 SSDs	 12	 SSDs	 16	 SSDs	

Re
la
%v

e	
M
TT
DL

	

RAID5	 Striping	 Single	

Figure 3.15: Lifetime of SSD arrays with TECC.

Another technique we evaluated is scrubbing, which actively scans cold data

during idle time to prevent the accumulation of errors. Figure 3.16 shows the lifetime

of 8 SSDs with scrubbing of cold data. We assume that 80% of hot workload is

concentrated on 20% of hot space. The result shows that scrubbing is not beneficial

in improving the lifetime of the device array. With both ECC and TECC, scrubbing

is shown to decrease lifetime slightly. Hot pages enable efficient garbage collection

and reduce write amplification. However, hot pages experience increased read disturb

errors, canceling out the benefits of more efficient garbage collection. This implies

careful consideration is required to employ advanced techniques in SSD based storage

systems.

Once again, the flash characteristics, here the read disturb errors, are sufficiently

different from magnetic disk drives, and hence warrant careful re-examination of

traditional data protection mechanisms.

Advanced techniques to reduce the write amplification favor RAID5. RAID5

has higher space utilization due to parity resulting in higher write amplification

from garbage collection. Parity updates also increase write amplification in RAID5

systems. These two factors amplify each other. When we compare the lifetime of

51

0	

0.5	

1	

1.5	

2	

ECC	 TECC	 ECC	 TECC	 ECC	 TECC	 ECC	 TECC	

Uniform	 Hot/Cold	 Uniform	 Hot/Cold	

No	 Scrubbing	 Scrubbing	

Re
la
%v

e	
M
TT
DL

	

RAID5	 Striping	

Figure 3.16: Lifetime of 8 SSDs with/without Scrubbing/TECC.

striping and RAID5 in Figure 3.11 and Figure 3.15, we can see that TECC improves

lifetime in RAID5 systems more than that in systems with striping.

3.5.8 Read:write ratio

Read:write ratio in workload has an impact on many factors in reliability such

as error detection rate and the write amplification from ECC recovery. We evaluate

the lifetime of an SSD array with different read:write ratios in Figure 3.17. Under

the same intensity of workload, higher read:write ratio implies less amount of write

workload. Thus, the lifetime of both RAID5 and striping increase as read:write ratio

increases. However, the lifetime of RAID5 improves faster than striping.

3.5.9 Workload intensity

We explore different workload intensities and their impact on the lifetime of

RAID5 and striping. Figure 3.18 shows the lifetime of RAID5 and striping when the

workload intensity is lower.

The lifetime of RAID5 goes up rapidly as the workload intensity decreases. The

less intensive workload wears out SSD at a slower rate, resulting in lower page errors.

As a result, device failure rate which is constant is more likely to cause data loss

52

0	

0.5	

1	

1.5	

2	

2.5	

1:3	 1:2	 1:1	 3:1	 5:1	 7:1	 9:1	

Re
la
%v

e	
M
TT
DL

	

Read	 :	 Write	 in	 workload	

RAID5	 Striping	

Figure 3.17: Lifetime of 8 SSDs with different read:write ratios in workload

0.1	

1	

10	

100	

128	
500MB/s	

64	
250	 MB/s	

32	
125	 MB/s	

16	
62.5	 MB/s	

8	
31.75	 MB/s	

4	
15.88	 MB/s	

2	
7.94	 MB/s	

Re
la
%v

e	
M
TT
DL

	

Device	 write	 per	 day	
Average	 workload	 intensity	 per	 device	

RAID5	 Striping	

Figure 3.18: Lifetime improvement of 8 SSDs with different workload intensities

than bit/page errors under the less intensive workload. Since parity protection serves

recovery from a device failure, RAID5 is more robust than striping under less inten-

sive workloads. It is noted that when the workload intensity is less than 8 DWPD,

RAID5 offers higher lifetimes than striping.

We compare the lifetime of RAID5 to striping under less intensive workload, 31.25

MB/s/dev, in Figure 3.19. We can clearly see that RAID5 wins over striping with

smaller number of SSDs than RAID5 does under 125 MB/s/dev which is shown in

Figure 3.11.

53

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

4.5	

Single	 2	 SSDs	 4	 SSDs	 8	 SSDs	 12	 SSDs	 16	 SSDs	

Re
la
%v

e	
M
TT
DL

	

RAID5	 Striping	 Single	

Figure 3.19: Lifetime of SSD arrays with 31.25 MB/s/dev workload

A (nonvolatile) cache can absorb significant part of the workload going to the

storage system. The result in Figure 3.18 shows that with reduced workloads, RAID5

can provide higher lifetimes than striping. Moreover, RAID5 obtains a higher benefit

from caching than striping. It is noted that in a system with cache, the cache may

alter the workload distribution at the drives. We discuss different reliability issues

when we employ a nonvolatile cache for an SSD array in Section 4.

3.5.10 Workload characteristics

We consider other parameters such as read:write ratios and data access rates in

Figure 3.17 and 3.18. The workloads that are less write intensive result in SSDs

that wear out at a slower rate while constant device failure rates contribute more to

data loss. Since RAID5 is robust to device level failure, its lifetime grows faster than

striping.

Read workload also needs to be considered because of its write amplification.

For example, both the 62.5 MB/s/device workload in Figure 3.18 and the R:W=7:1

workload in Figure 3.17 have the same write request rate, but the 62.5 MB/s/device

workload has lower read request rate which in part converts into extra writes from fre-

54

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Single	 2	 SSDs	 4	 SSDs	 8	 SSDs	 12	 SSDs	 16	 SSDs	

Re
la
%v

e	
M
TT
DL

	

RAID5	 Striping	 Single	

Figure 3.20: Lifetime of SSD arrays at higher annual device failure rate (5%)

quent ECC recovery. As a result, the lifetime of RAID5 under the 62.5MB/s/device

workload is less than the lifetime under the R:W=7:1 workload (total 125.0 MB/s

request rate).

3.5.11 Device failure rate

We evaluated the lifetime of RAID5 with higher failure rate (annually 5%) in

Figure 3.20. In the figure, when the number of devices is more than 8, RAID5

provides higher average lifetimes than striping. This result shows that RAID5 is

useful with larger device failure rate and larger number of devices in the array. The

larger number of devices contribute to larger failure rates at the system level as well

as to smaller overheads for parity.

Figure 3.21 shows the lifetime of 8 SSDs with different annual device failure rates

(AFR). It clearly shows that RAID5 improves reliability at higher device failure

rates. We assumed an AFR of 3% in this section, which comes from the average

returning rate of SSDs in [29].

55

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1%	 3%	 5%	 10%	 15%	 20%	

Re
la
%v

e	
M
TT
DL

	

Annual	 device	 failure	 rate	 of	 SSD	

RAID5	 Striping	

Figure 3.21: Lifetime of 8 SSDs with different annual device failure rates

3.5.12 Non-uniform workload

WE consider a more realistic workload where writes lengths are exponentially

distributed. Figure 3.22 shows the shape of Equation (3.12): the write amplification

from garbage collection with modified FIFO policy. It shows that the write ampli-

fication from garbage collection rapidly drops as the average write length increases.

As shown in the figure, the write amplification from garbage collection drastically

deceases at higher space utilization as the average write length increases thanks to

sequentially written pages. This result is consistent with well-known observation

that the performance under large sequential writes is better than that under small

and random writes because of less frequent garbage collection process.

We evaluated the lifetime of striping and RAID5 with different average write

lengths from 4 KB to 20 MB in Figure 3.23. It is observed that at low device space

utilizations, write lengths do not have a significant impact on write amplification.

But write lengths can impact write amplification significantly at higher space utiliza-

tions. Figure 3.23a shows the results with the default parameters used so far in this

section and Figure 3.23b shows the results from a configuration with higher space

56

0

0.5

1

10
1 10

2 10
3 10

4

0

1

2

3

4

5

6

Average Write Length (KB)Device Utilization

W
rit

e
A

m
pl

ifi
ca

tio
n

fr
om

 G
ar

ba
ge

 C
ol

le
ct

io
n

Figure 3.22: Write amplification from garbage collection (policy: modified FIFO)

utilization. In both cases, the lifetime improves as the write length increases from 4

KB to 20 MB. It is observed that the parity update overhead decreases with larger

writes and the average data lifetimes get close to maximal lifetimes with increased

write lengths. When we compare Figure 3.23a and 3.23b, it is observed that larger

write lengths have higher impact on lifetime at higher space utilizations, consistent

with the write amplification results in Figure 3.22.

Another observation is that parity update gets efficient when the write length

increases. Figure 3.24 shows the change of lifetime as the average write length

increases. It shows that the lifetime improves considerably at smaller write lengths,

as we increase the write length from 4 KB to 40 KB and again at higher write

lengths when the write length increases from 800 KB. At smaller write lengths, the

improvement comes from increased efficiency in parity updates and at higher write

lengths, the efficiency comes from improved garbage collection efficiency. It is also

observed that write lengths play a larger role at higher capacity utilizations.

57

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

4KB	 8KB	 20KB	 40KB	 80KB	 200KB	 400KB	 800KB	 2MB	 4MB	 8MB	 20MB	

Re
la
%v

e	
M
TT
DL

	

Average	 write	 length	 in	 workload	

RAID5	 Striping	

(a) 30 GB/device

0	

0.2	

0.4	

0.6	

0.8	

1	

4KB	 8KB	 20KB	 40KB	 80KB	 200KB	 400KB	 800KB	 2MB	 4MB	 8MB	 20MB	

Re
la
%v

e	
M
TT
DL

	

Average	 write	 length	 in	 workload	

RAID5	 Striping	

(b) 50 GB/device

Figure 3.23: Lifetime of 8 SSDs with different average write lengths

3.5.13 Erase block size

The evaluation results in Figure 3.23 show that large write lengths make garbage

collection more efficient by increasing the number of blocks with mostly invalid pages.

Instead of increasing the write lengths in the workload, we can decrease erase block

size to increase the number of blocks with many invalid pages. Figure 3.25 is the

evaluation result when we employ smaller erase blocks. It shows that the lifetime of

SSD arrays increases as erase block size decreases, similar to the results of different

average write lengths in Figure 3.23, RAID5 lifetime improves faster than striping.

58

0	

100	

200	

300	

400	

4KB	 8KB	 20KB	 40KB	 80KB	 200KB	 400KB	 800KB	 2MB	 4MB	 8MB	 20MB	 Ac
cu
m
ul
a'

ve
	 In

cr
em

en
ta
l	 	

in
	 L
ife

'm
e	
(%

)	

Average	 write	 length	 in	 workload	

RAID5	 (30GB/dev)	 Striping	 (30GB/dev)	

RAID5	 (50GB/dev)	 Striping	 (50GB/dev)	

Figure 3.24: Accumulative increment in the lifetime of 8 SSDs

3.5.14 Spare SSD

Since space overhead of parity is one of the main sources of degradation in lifetime

of RAID5, we evaluated the impact of an additional SSD in a RAID5 system to keep

space utilization of RAID5 same as striping. Figure 3.26 shows a comparison of N

SSD system to that of an N + 1 SSD RAID5. The results show that the lifetime

of RAID5 can be lower than striping at small number of devices even when we

opt to employ an extra device. However, the lifetimes become closer and roughly

comparable above 4 devices. These results show that simply adding an extra device

to reduce space utilization may not be sufficient for RAID5 to have higher lifetime

than striping at smaller number of devices.

3.5.15 Scalability

Our evaluation results so far have shown that RAID5 may not always be beneficial

in improving the lifetime compared to striping when we consider a single array of 4-

16 SSDs. However, when we scale out those results to many devices, we see a totally

different story. We compare the lifetime of a system consisting of many 4-SSD arrays

to the lifetime of striping in Figure 3.27. The results show that striping is very poor

59

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

512KB	 256KB	 128KB	 64KB	 32KB	 16KB	

Re
la
%v

e	
M
TT
DL

	

Erase	 block	 size	 in	 SSD	

RAID5	 Striping	

(a) 30 GB/device

0	

0.2	

0.4	

0.6	

0.8	

1	

512KB	 256KB	 128KB	 64KB	 32KB	 16KB	

Re
la
%v

e	
M
TT
DL

	

Erase	 block	 size	 in	 SSD	

RAID5	 Striping	

(b) 50 GB/device

Figure 3.25: Lifetime of 8 SSDs with different erase block sizes, q = 512 KB

at scaling out since only one failure in tens of devices results in data loss. We cannot

argue to compose large-scale storage systems without parity protection at the system

level, but our results show that RAID5 is not universally beneficial, especially with

small number of devices.

3.5.16 Summary of evaluation

Most of our evaluation results imply that write amplification is key to under-

standing the reliability of SSD arrays:

(1) Write amplification can be rather harmful to the reliability of SSD arrays. The

60

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

2	 SSDs	 4	 SSDs	 8	 SSDs	 12	 SSDs	 16	 SSDs	

Re
la
%v

e	
M
TT
DL

	

RAID5	 (with	 a	 spare	 SSD)	 Striping	

Figure 3.26: Lifetime improvement of SSD arrays (using one more SSD for RAID5)

0	

0.2	

0.4	

0.6	

0.8	

1	

1	 RAID	
(4	 SSDs)	

5	 RAIDs	
(20	 SSDs)	

10	 RAIDs	
(40	 SSDs)	

15	 RAIDs	
(60	 SSDs)	

20	 RAIDs	
(80	 SSDs)	

25	 RAIDs	
(100	 SSDs)	

50	 RAIDs	
(200	 SSDs)	

Re
la
%v

e	
M
TT
DL

	

RAID	 Array	 (4	 SSDs	 per	 RAID)	 Striping	

Figure 3.27: A series of 4-SSD RAID5s vs. striping

sources of write amplification should be carefully examined before employing RAID

like protection schemes.

(2) Many factors can change write amplification like space utilization, hotness and

sequentiality of workload. More efficient system level protection techniques need to

be designed taking write amplification into account.

61

4. SYSTEM LEVEL PROTECTION SCHEMES II: A MIXED SSD ARRAY

In Section 1, we have observed that there are different classes of SSDs. Enterprise

class (high-end) SSDs are expensive in cost-per-bit but they are faster and resilient

while client class (low-end) SSDs are cheaper but they are slower and less reliable.

In this section, we explore those classes of SSDs when they are composed in a hier-

archical manner. In a mixed SSD array, high-end SSDs are employed as cache for

low-end SSDs main storage to take advantage of both classes of SSDs at the same

time.

SLC SSDs are typically employed as a cache because of their higher performance

and higher lifetimes. MLC SSDs are typically employed as backend storage because

of their lower cost per GB. Even though SLC caches have higher write endurance,

since caches tend to absorb a very large fraction of the workload, it is feasible that the

SLC caches can wear out faster than the backend MLC storage. In such SSD arrays,

the data lifetime is dependent on the minimum of the lifetimes of the cache and

storage. Hence, it is important that workload is appropriately distributed across the

cache and storage to maximize data lifetimes. Traditionally cache policies have only

considered performance as a metric and this section demonstrates the importance

of considering lifetime as a metric along with performance. We propose policies for

balancing performance and data lifetimes in such mixed SSD arrays.

4.1 System Level Protection Schemes : A Mixed SSD Array

In this section, we build an analysis model of workload distribution of a mixed

SSD array. We also provide examples that show the weakness of mixed SSD arrays

in terms of reliability.

Figure 4.1 overviews the architecture and workload distribution of a mixed SSD

62

High-‐end	 SSDs	

Low-‐end	 SSDs	

3.mrr

1.r 2.w

5. mrr +mww()d4.mrr
read miss dirty entry eviction

read write

Figure 4.1: Overview of a mixed SSD array with LRU caching policy

array. In the figure, least recently used (LRU) caching policy, one of the most popular

caching policies, is employed. Other caching policies are discussed in Section 4.3. In

the figure, red line represents write workload in cache and blue line stands for write

workload in main storage. Table 4.1 shows the list of symbols frequently used in this

section. For example, r and w are the read and write request rates, and mr and mw

are read and write cache miss rates, respectively.

In Figure 4.1, read misses mr · r in the cache become read requests at the storage

(arrow 3). These requests will result in writes (arrow 4) at the cache. Read misses

and write misses require space allocation in the cache. Clean data in the cache can

be discarded while dirty data has to flushed to the storage at rate d · (mr · r+mw ·w)

on an average where d is the dirty ratio in the cache.

When workloads have weak locality in reads, cache can wear out substantially

with marginal benefits in performance. In this case, selective caching of read cache

misses can save write endurance of cache with acceptable degradation in performance.

However, bypassing read cache misses for hot data can result in severe degradation

in performance. Write workload is entirely absorbed in cache first (arrow 2), and

only a portion of writes is flushed to main storage (arrow 5). Write intensive work-

loads with strong locality therefore can wear out the cache faster than main storage.

Appropriate distribution of writes between the cache and the storage improves the

63

Table 4.1: List of symbols

Symbols Description
lc, ls Write endurance of flash in cache and storage
cc, cs Capacity of an SSD (Cache, Storage)
cw Unique data size of workload

Nc, Ns The number of SSDs (Cache, Storage)
r Read workload intensity
w Write workload intensity
mr Read cache miss rate
mw Write cache miss rate

wc, ws Actual writes in cache (wc) and storage (ws)
fc, fs Wear out rate per flash cell (Cache, Storage)
d The portion of dirty data in cache

tc,r, tc,w Read (tc,r) and write (tc,w) latency of cache
ts,r, ts,w Read (ts,r) and write (ts,w) latency of storage

lifetime of the cache, but it can degrade the performance of the storage system. This

section studies this tradeoff between performance and lifetime in an SSD array where

the cache and backend storage employ different types of flash devices.

We model the workload distribution of the mixed SSD array in Figure 4.1. With

LRU caching policy, flushing of dirty data results in writes at main storage as indi-

cated by the arrow 5 in Figure 4.1. The writes served in storage per flash memory

cell ws is

ws =
(mr · r +mw · w) · d

Ns · cs
(4.1)

where Ns is the number of SSDs in main storage and cs is the capacity of the

SSDs.

In this section, we assume perfect wear leveling in both cache and main storage.

According to Figure 4.1, the writes served in cache per flash memory cell, wc, is the

sum of the read misses (arrow 4) and the write workload (arrow 2) per flash memory

64

cell.

wc =
mr · r + w

Nc · cc
(4.2)

where Nc is the number of SSDs in cache and cc is the capacity of the SSDs.

Cache and storage wear out at the rate of fc and fs, respectively.

fc =
wc

lc
=
mr · r + w

Nc · cc · lc

fs =
ws

ls
=

(mr · r +mw · w) · d
Ns · cs · ls

(4.3)

The achievable lifetime of a mixed SSD array T can be restated as

T =
1

max(fc, fs)
(4.4)

Under the assumptions of equal write amplification in the cache and the storage,

we can use these equations to estimate the lifetime of mixed SSD arrays.

The relationship between performance and lifetime is complex and non-linear.

The performance benefits from cache potentially result in significant loss in lifetime

of the mixed SSD arrays in practical configurations. Thus, the trade-offs between

performance and lifetime of the storage systems should be tuned carefully.

4.1.1 Example

Table 4.2 shows practical parameters of different classes of SSDs and enterprise

workloads.

When we employ one high-end SSD as a cache for 3 low-end SSDs for Workload

I in Table 4.2, for example, the high-end SSD cache absorbs all write workload as

well as 10% of read workload (read cache miss) in writes. The amount of writes per

flash memory cell in the high-end SSD is wc and the SLC wears out at the rate fc:

65

Table 4.2: Practical configuration of SSDs and workload

Item Description Specification

High-end (SLC) SSD
Capacity 100 GB
Write endurance 100 K
Read/write latency 0.04ms/0.2ms

Low-end (MLC) SSD
Capacity 200 GB
Write endurance 10 K
R/W latency 0.2ms/1.0ms

Workload I

Read / write (MB/s) 160 / 200
R/W cache hit rate 90%/85%
R/W length 16KB/16KB
Dirty data in cache 65%

Workload II

Read / write (MB/s) 100 / 250
R/W cache hit rate 50%/15%
R/W length 4KB/64KB
Dirty data in cache 81%

wc =
160MB/s · 0.1 + 200MB/s

1 · 100GB

= 2.16e-3 writes / cell / sec

fc =
6.75e-3

100K
= 2.16e-8 / cell / sec

(4.5)

This implies that the workload consumes 2.16e-8 of SLC’s write endurance per

second, or SLC’s write endurance would be consumed in 1.47 years.

Cache miss initiates cache data eviction. While clean data is simply removed in

cache, dirty data should be written back to main storage. The rate of writeback ws,

and resulting wear out rate of MLC fs can be estimated in Equation (4.6).

ws =
(160MB/s · 0.1 + 0.15 · 200MB/s) · 0.65

600GB

= 4.98e-5 writes / cell / sec

fs =
4.98e-5

10K
= 4.98e-9 / per / sec

(4.6)

66

In other words, the MLC will use up its write endurance in 6.37 years.

This simple example shows that SLC SSD cache can wear out faster and lose data

before MLC SSD wears out, and the lifetime of the mixed SSD array is bounded to

the shorter lifetime, 1.47 years in this case.

The average latency can be computed for each configuration. In this example,

the average latency is 0.136 ms.

When the same configuration goes through Workload II in Table 4.2, however,

we see a different workload distribution. Cache wears out at the rate fc in Equation

(4.7).

wc =
100MB/s · 0.5 + 250MB/s

1 · 100GB

= 3.00e-3 writes / cell / sec

fc =
3.00e-3

100K
= 3.00e-8 / cell / sec

(4.7)

Meanwhile, storage wears out at the following rate fs:

ws =
(0.50 · 100MB/s+ 0.85 · 250MB/s) · 0.81

600GB

= 3.54e-4 writes / cell / sec

fs =
3.54e-4

10K
= 3.54e-8 / per / sec

(4.8)

The results in Equation (4.7) and (4.8) show that the lifetime of SLC is expected

to be 1.06 years, while MLC’s lifetime is 0.90 years. The lifetime of the mixed SSD

array is bounded to the lifetime of MLC (the lower), 0.90 years, in this example.

The latency of the mixed SSD array is 0.173 ms on an average.

As seen above, the high-end SSD cache can wear out faster than low-end SSDs,

because 1) majority of workload is served by the cache, and 2) read cache misses

67

turn into writes to the cache.

The imbalance in lifetime between cache and main storage motivates the investi-

gation of a new approach that considers both performance (latency) and lifetime of

different classes of SSDs.

The major contributions of this section are:

• We find that high-end SSD cache can wear out faster than low-end SSD main

storage and this could result in lower lifetimes of mixed SSD arrays.

• We introduce a new metric, latency over lifetime, to control the trade-off be-

tween the performance (latency) and lifetime. The metric is minimized when

latency is smaller and lifetime is larger.

• We propose a sampling based approach to appropriately distribute workload

across cache and backend storage for trading off performance and lifetime in

mixed SSD arrays. We show that the proposed approach improves latency over

lifetime in such arrays by up to 2.3 times.

The rest of the section is organized as follows. Section 4.2 states the problem

Section 4 targets to solve. Section 4.3 discusses existing caching policies. Section

4.4 shows our sampling based approach for adaptive workload distribution. Sec-

tion 4.5 evaluates different caching policies with our adaptive workload distribution

algorithm.

4.2 Problem Statement

Storage systems could be designed to provide average latencies below a target

performance metric. We call this latency as target latency in this section. When

the estimated latency exceeds the target latency, caching policy would be required

to load more data in the cache. When the cache is utilized on every request and the

68

latency targets are not being met, the only alternative would be to increase the size

of the cache. We assume, for this section, we have to operate with a given cache size.

Both performance (latency 1) and lifetime are optimized such that a latency over

lifetime is minimized. The goal of this section can be restated as an optimization

problem to minimize the latency over lifetime subject to a latency constraint in

Equation (4.9).

minimize L / T

subject to

L ≤ Lmax

(4.9)

where L is the expected latency, Lmax is the target latency constraint, and T is

the expected lifetime.

From Figure 4.4, we can estimate the latency of mixed SSD arrays. The average

latency L can be measured at the storage system for a given workload.

4.3 Caching policies

Different caching policies can be applied to mixed SSD arrays for different char-

acteristics of enterprise workloads. Traditional caching policies based on request size

and hotness of workload are introduced in this section. Additionally, a probability

based caching policy is proposed to control workloads across SSD arrays precisely.

4.3.1 Request size

Recent solutions [3, 12] propose to selectively cache requests whose size is less

than a threshold. Although the target of the solution is an SSD cache for hard disk

main storage, this is possibly effective in SSD arrays with an SSD cache because 1)

1There have been many cache performance metrics such as cache hit rate, latency, and throughput.
We use latency in this section.

69

large sequential I/O requests push out valid data in cache, and 2) sequential I/O

performance of main storage is usually better than random read/write performance.

However, the threshold for classifying sequential/random I/O should be determined

carefully. Since the optimal size (threshold) depends on the characteristics of work-

load which changes over time. The work in [3] uses a static threshold (4 MB) and

caches I/O requests whose sizes are less than the 4MB threshold.

4.3.2 Hotness

Hotness of data has been used to determine which data should be cached and

which data should be directly written to storage. Recent study [41] introduced a

workload flow control system based on the hotness of write requests, where a portion

of hot write requests are served by the faster device. This approach, however, controls

only write requests. Unlike this earlier study, our algorithm considers the impact of

data flows from both read and write requests (hits and misses) to properly account

for writes into the cache and the storage.

Another recent study [11] employs a secondary cache to determine appropriate

sizes of hot cache (frequency), LRU cache (recency), clean cache, and dirty cache.

The goal of the study is to reduce the number of writes to main storage while improv-

ing cache hit rate, assuming that the cache is robust enough. Unlike this study, our

target system employs high-end SSD cache which may wear out faster than low-end

SSD main storage. The goal of our study is to maximize lifetime of an entire storage

system considering wearing of cache and main storage at the same time.

Considering a variety of hotness based caching policies, we choose to design a

simple policy with a second level cache, called a shadow cache in this section. The

size of shadow cache is configurable and it is equal to the size of actual cache in this

section. Figure 4.2 briefly describes the architecture of our hotness based caching

70

1. Initial (and cold) reads / writes

2. Promote to hot data

3. Demote cold data

4. Eviction

Shadow	 Cache	

Hot	 Cache	

Head: most recent
hot data

Tail

Tail

Head : most recent
warm data

1-1. Hotness > 1.0 1-2. Hotness < 1.0

Figure 4.2: Overview of hotness based caching policy

policy employed in this section.

In the figure, initial and cold references are directly served by main storage and

their metadata are stored in the shadow cache (arrow 1-1). In each observation

period, our hotness based caching policy tracks reference count of used data by 4 KB

blocks. The top 10% (configurable) of the recent reference count updates a hotness

classifier. The hotness classifier is a threshold to distribute hot and cold workload

across cache and storage in this policy. The data whose reference count is larger

than the hotness classifier is treated as hot data. We call the cache accepting only

hot data as hot cache in this section. Recent and frequent data (hot data) in shadow

cache are promoted and relocated to hot cache from the shadow cache in the next

reference (arrow 2). Only when the hotness classifier is less than or equal to 1.0

such that hot cache needs to accept all incoming workload, all references are sent

to the cache directly (arrow 1-2). Both hot cache and shadow cache internally work

like LRU caches. The least recently used data in the tail of hot cache is demoted,

71

removed and sent to main storage if the data is dirty, and its metadata is kept at

the head of shadow cache (arrow 3). The metadata is held until it is evicted from

shadow cache (arrow 4).

4.3.3 Probabilistic caching policy

Existing caching policies mentioned above do not allow precise control on work-

load distribution. For example, request size based caching policy cannot distribute

workload well when one request size is dominating in the workload.

Figure 4.3a shows the distribution of request sizes of a workload trace of hardware

monitoring server (hm) application from Microsoft Block I/O Trace [42]. It shows

that 4 KB, 8 KB, and 16 KB are the dominant request sizes which make it difficult

to choose an appropriate static size parameter for controlling the distribution of

workload across the cache and main storage.

Figure 4.3b shows the distribution of reference frequency across logical addresses

of data of media server (mds) application trace. It shows that reference frequency is

extremely skewed to a few number of blocks and references of the rest of blocks are

almost uniformly distributed. Specifically, about 90% of data are accessed once and

never revisited, and about 9.5% of data are accessed only twice, and only 0.5% of

accesses are repeated more than twice. Such skewed distribution makes it difficult to

choose an appropriate hotness classifier to distribute workload appropriately across

the cache and main storage.

Under such extreme workloads, existing caching policies cannot precisely control

the workload distribution across the cache and storage components of the system.

Consequently, a new caching policy is proposed which is able to distribute even an

extremely skewed workload. In the new caching policy, requests are probabilistically

cached. Unlike other policies mentioned above, the probabilistic caching policy does

72

4 8 12 16 20 24 28 32 36 40
I/O Request Size (KB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

I/O
 C

ou
nt

1e6 Hardware Monitoring

(a) Hardware monitoring server, request size ≤ 40KB

(b) Media server, hotness ≤ 10 accesses

Figure 4.3: Workload distribution by (a) request size and (b) reference count.

not depend on skewness of workload in request sizes or hotness.

In addition, the probabilistic caching policy is one of the simplest ways to imple-

73

Frontend	 Cache	

Backend	 Storage	
2.mrr

1.hrr

6. mrr +mww() pd5.mw (1− p)w 3.mr pr

4.(1−mw (1− p))w
read write

read miss bypassed
write miss dirty entry eviction

bypassed
read miss

7.mr (1− p)r

Figure 4.4: Workload distribution (probabilistic caching policy)

ment the workload flow control system. The policy periodically updates a threshold

(the probability of caching) based on total write counts in cache and storage. In

contrast, the hotness based caching policy in Section 4.3.2 requires keeping track of

reference count for each recently used data in the cache and in the shadow cache.

The probabilistic caching policy is not optimal in terms of cache hit rate since it

does not guarantee that cached data is more likely to be referenced in the near future

than the bypassed data. Nevertheless, the caching policy is still effective since loss

in performance is generally marginal because the bypassed hot data could be loaded

on the next cache miss.

Figure 4.4 shows how the probabilistic caching policy is different from LRU. In the

figure, red line shows write workload and black line shows read workload, respectively.

Only a portion p of read cache miss is recorded in cache for future accesses (arrow

3). The higher the p is, the more we write in the cache on a read miss. In addition, a

portion 1− p of write cache misses go directly to main storage (arrow 5) which does

not exist in the LRU policy in Figure 4.4. As we increase the portion p, frontend

cache serves a higher fraction of workload and wears out faster. The performance

can also be tuned by changing the same probability parameter p, thus enabling an

effective control mechanism to optimize for both metrics of performance and lifetime.

74

4.4 Adaptive workload distribution

In this section, we show that static workload classifiers can be less efficient. We

propose a sampling based approach which makes existing caching policies adaptive

to the characteristics of workloads.

4.4.1 Static threshold based analysis

Static workload classifiers are recently used in many caching policies such as size

based caching policy [3, 12]. For example, we can selectively cache requests whose

size is less than or equal to 64 KB, and send requests larger than 64 KB directly

to main storage. This policy has been advocated considering competitive sequential

read/write performance of low-end storage device arrays.

We explore the effectiveness of different static workload classifiers (thresholds) for

different enterprise workloads. We use our own trace-driven simulator with enterprise

workload traces in [42]. Details of the simulator are discussed later in Section 4.5.1.

Figure 4.5 shows latency, lifetime, and latency over lifetime of a size based caching

policy with different thresholds. In the figure, we normalize the results of different

thresholds to that of 256 KB.

In the figure, we can clearly see that there is no ideal threshold which can be

applied across both the workloads. Each workload has different optimal threshold in

terms of latency over lifetime. Figure 4.5a shows that 64KB is the optimal threshold

for hardware monitoring server trace. Meanwhile, the optimal threshold of web server

application in Figure 4.5b is 4 KB.

We also track latency, lifetime, and latency over lifetime of probabilistic caching

policy with different static thresholds in Figure 4.6. In the figure, static threshold

is the probability of caching and it is applied from the beginning to the end of

traces. The result shows the average latency over lifetime for a week, and the result

75

256 KB 128 KB 64KB 32KB 16KB 8KB 4KB
Workload Classifier (Threshold)

10-1

100

101

N
o
rm

a
liz

e
d
 L

a
te

n
cy

,
Li

fe
ti

m
e
,
a
n
d
 M

e
tr

ic

latency

lifetime

metric

(a) Hardware monitoring server

256 KB 128 KB 64KB 32KB 16KB 8KB 4KB
Workload Classifier (Threshold)

10-2

10-1

100

101

102

N
o
rm

a
liz

e
d
 L

a
te

n
cy

,
Li

fe
ti

m
e
,
a
n
d
 M

e
tr

ic

latency

lifetime

metric

(b) Web server

Figure 4.5: Static threshold based analysis of size based caching policy

is normalized to the result of threshold of 0.99. The results in Figure 4.6a show that

the optimal workload distribution is achieved at 0.3 where lifetime is maximized.

76

0.99 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.01
Threshold

10-1

100

101

No
rm

al
iz

ed
 L

at
en

cy
, L

ife
tim

e,
 a

nd
 M

et
ric

latency
lifetime
metric

(a) Hardware monitoring server

0.99 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.01
Threshold

10-2

10-1

100

101

102

No
rm

al
iz

ed
 L

at
en

cy
, L

ife
tim

e,
 a

nd
 M

et
ric

latency
lifetime
metric

(b) Web server

Figure 4.6: Static threshold based analysis of probabilistic caching policy

In Figure 4.6b, however, it is better to send most of the workload directly to main

storage.

77

The results in Figure 4.5 and 4.6 show that the latency increases as a smaller

fraction of workload is served in the cache. However, the latency over lifetime does

not always monotonically increase as the threshold is increased as shown in Figure

4.6a.

4.4.2 Sampling based approach

Figure 4.5 and 4.6 show that the latency over lifetime does not monotonically

change and the control function may change from workload to workload. In order

to adapt to each workload and to different phases of a given workload, we propose a

sampling based approach. Our approach is to sample the workload and run them in

separate sample caches with different workload classifiers (thresholds) to find the op-

timal threshold. This enables the estimation of the latency over lifetime vs. threshold

curve. Based on the estimation, we can choose the optimal threshold. The optimal

threshold can be adaptive to changes in the characteristics of the workload.

Figure 4.7 shows the architecture of the sampling based adaptive threshold algo-

rithm applied to a probabilistic caching policy. It is noted that the sampling based

approach can be employed with other caching policies in a similar way. We use

a hash function to sample the workload randomly. We maintain multiple sample

caches that run the cache policy with different thresholds. The size of each sample

cache is maintained proportional to the size of the sampled workload. Each sample

cache works independently and the results from the sample caches are used to set the

thresholds for the main cache. Figure 4.7 shows 10 sample caches with each cache

supporting 0.1% of workload (with 0.1% of cache space in each) and the main cache

supporting 99% of the remaining workload. In Figure 4.7, sample caches employ

different thresholds of 10%, 20%, and so on and the probability employed by the

main cache is based on the observed results of the sampled caches.

78

The latency, lifetime, and resulting latency over lifetime of each sample cache

is periodically updated. For each timeframe s, we estimate lifetime of each sample

cache (considering the lifetime of corresponding storage) T [s]:

T [s] = min(
l′s[s]

w′s[s]
,
l′c[s]

w′c[s]
)

w′c[s] = αw′c[s− 1] + (1− α) · wc[s]

w′s[s] = αw′s[s− 1] + (1− α) · ws[s]

l′c[s] = lc −
∑s−1

k=1wc[k]

Nc · Cc

l′s[s] = ls −
∑s−1

k=1ws[k]

Ns · Cs

(4.10)

where wc[s] and ws[s] are write count per flash cell in sample cache and corre-

sponding storage at timeframe s, and l′s[s] and l′c[s] are remaining lifetime of sample

cache and corresponding storage, respectively. The smoothing factor α depends on

the sampling rate and the size of the timeframe. We use α = 0.8 for 1% sampling

rate, α = 0.9 for 5% and 10% sampling rate, in this section. The lifetime T [s] shows

how much time remains from timeframe s to reach the end of lifetime of the SSD

array.

The optimal threshold is the threshold of the cache with the least latency over

lifetime. The optimal threshold pc is applied to the rest of the cache (except sample

caches) in an adaptive way:

pc[s] = α · pc[s− 1] + (1− α) · ps[s] (4.11)

where ps[s] is the selected threshold in sample caches in timeframe s, and pc[s] is

79

Es#mate	 latency	 over	 life#me	
for	 each	 sampling	 cache	

hash	 func#on	 (address)	 =	 value	

address of I/O request

sampling	 cache	 policy	

sampling	 cache	 policy	

sampling	 cache	 policy	

sampling	 cache	 policy	

. . .

Probabilis#c	 Caching	
Policy	

99%

0.1%

0.1%

0.1%

0.1%
LRU	 cache	

LRU	 cache	

LRU	 cache	

LRU	 cache	

LRU	 cache	

10%

20%

30%

100%

p %

90%

80%

70%

Select	 the	 op#mal	 probability	 of	 caching	

100 - p %

p:	 moving	 average	 of	 the	
selected	 probability	

Sampling	 Rate	 =	 1%	

Main Storage

Figure 4.7: Probabilistic cache with sampling method (sampling rate: 1%)

the threshold applied to the rest of cache (except sample caches) at timeframe s.

The result of sample caches violating a latency constraint are excluded in the

optimal threshold selection.

In this section, default sampling rate is 1% unless specified.

4.5 Evaluation

In this section, different caching policies in Section 4.3 are evaluated when the

proposed adaptive workload distribution approach is employed.

4.5.1 Simulator

We built a trace-driven simulator based on the analysis in Section 4.1 to see the

behavior of mixed SSD arrays with different caching policies in Section 4.3. Figure

4.8 illustrates the details of our trace-driven simulator.

In the simulator, statistical information such as cache hit rate and actual read/write

80

count in cache and storage is collected and periodically updated by information col-

lector. Various metrics such as wearing out rate (and resulting expected lifetime) and

average latency are estimated based on the information. For hotness based caching

policy, both cache and shadow cache additionally maintain frequency (hotness) of

references as described in Section 4.3.2.

In the figure, the workload locator assigns appropriate SSDs to serve incoming

I/O requests using a workload classifier (threshold) which is either a static constant

or an adaptive variable. Each caching policy exploits the threshold in a different

way. Request size based caching policy sends I/O requests whose size is less than a

threshold to cache. Hotness based caching policy caches data whose reference count

is more than a hotness parameter. Probability based policy handles only a portion p

of I/O requests in cache where p is the threshold. The adaptive threshold algorithm

periodically updates the threshold based on the information from the sample caches.

Details of the adaptive threshold algorithm are discussed in Section 4.4.

4.5.2 Simulation environment

We employ enterprise workload traces from Microsoft Research Cambridge [42].

These 13 enterprise applications exhibit different characteristics; they have different

cache hit rates vs. cache provisioning 2, read/write ratios, request size distribution,

total unique data size, reference frequency (hotness) etc.

Among the 13 MSRC traces, we choose 2 applications and show their cache hit

rate vs. cache provisioning in Figure 4.9. The characteristics of a full set of applica-

tions are discussed in a recent study [59]. It is observed from Figure 4.9 that cache

provisioning impacts performance of different workloads differently. It is observed

that the hit rates of the hardware monitoring application improve considerably with

2The cache provisioning is the ratio of cache size to storage size.

81

Workload	 Generator	

Informa0on	 Collector	

B	 B	 B	 B	 . . .
Block Map

Cache	

Trace	

Storage	

Shadow Cache
(Hotness Policy Only)

Workload	 Locator	

Adap0ve	
Threshold	

Manage Block List (LRU)

Cache

Directly send it to storage

Update  
Threshold

Update Stat.

Issue an I/O request to cache simulator

Figure 4.8: Trace-driven simulator overview

higher cache provisioning. However, the web server workload in Figure 4.9b doesn’t

benefit significantly from higher cache provisioning. In this case, increasing cache

size is not efficient. An appropriate strategy therefore should be established for each

workload. Due to the diversity of the characteristics of applications, static workload

classifiers are overall less efficient than adaptive workload classifiers.

In this section, cache provisioning is 5% unless specified, and other provisioning

numbers from 1% to 10% are explored as well. The capacity of main storage is twice

the size of unique data in the workload, i.e. the space utilization of main storage is

50%.

A default target latency of 0.4ms is considered while other latency constraints

such as 0.2 ms and 1.0 ms are discussed. Many parameters such as queue depth and

average I/O request size determine the relationship among performance metrics such

as throughput, IOPS, and latency.

82

01 03 05 07 10
Cache Provisioning (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
ch

e
Hi

t R
at

e

Provisioning vs. Cache Hit Rate (hm)

read
write
total

(a) Hardware monitoring

01 03 05 07 10
Cache Provisioning (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ca
ch

e
Hi

t R
at

e

Provisioning vs. Cache Hit Rate (web)

read
write
total

(b) Web server

Figure 4.9: Cache hit rates vs. cache provisioning

Different classes of SSDs have different read/write latencies. We use 0.04 ms

and 0.2 ms of latencies for read and write operations in high-end SSDs, and 0.2 ms

83

and 1.0 ms of latencies for read and write operations in low-end SSDs, respectively.

Those numbers are from recent measurement results of commercial SSDs [1].

We use latency over lifetime as an effectiveness metric in this section. The metric

is lower (and desirable) when the expected latency is lower and/or the expected

lifetime is higher.

Some caching policies like [45] favor dirty data in cache to reduce write workload

in main storage. We assume that cache data eviction algorithm does not consider

the dirty/clean status of data.

4.5.3 Adaptive threshold algorithm

Figure 4.10 shows how the proposed adaptive threshold algorithm tracks the

changes in the characteristics of the workload.

Figure 4.10a shows the change of threshold as a function of average cache miss

rate of sample caches. In the figure, it is clearly shown that probability of caching

decreases for workloads with weak locality. Higher cache miss rate in sample caches

implies weak locality of workload, and caching such workloads results in faster cache

wear out with marginal benefits in performance. The threshold adapts to the cache

miss rates in sample caches and saves write endurance of cache in this case.

Figure 4.10b shows how the proposed algorithm controls the threshold consid-

ering reliability. In the figure, red line shows write ratio of workload and blue and

green lines show normalized wearing rates of cache and storage in the SSD array,

respectively. Black line shows the smoothed value of threshold applied to cache.

Since web server application is read intensive and the read workload has weak

locality, large number of read cache misses wear out the cache faster than the stor-

age without appropriate workload distribution. In terms of performance, the cache

doesn’t improve latency significantly because of low hit rates. In this case, bypassing

84

0 500 1000 1500 2000
Timeframe

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Threshold

Cache Miss Rate

(a) Printer server

0 100 200 300 400 500
Timeframe

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Write Ratio Normalized Wearing Rate (Cache) Normalized Wearing Rate (Storage) Threshold

(b) Web server

Figure 4.10: Adaptive threshold in probabilistic caching policy

cache can save cache lifetime without significant penalty in performance. As a result,

most of the read misses (99%) are served directly by main storage and this improves

the latency over lifetime metric.

There are occasional bursts of writes in the workload. During these bursts, the

estimated wearing rate of storage exceeds the wearing rate of cache and hence the

adaptive algorithm steers some of these writes to cache by increasing the threshold.

Figure 4.10a and 4.10b illustrate how the sampling approach adapts to workloads

85

and different phases in a workload for balancing both performance and lifetime.

For some observation periods, none of the sample caches may meet the target

latency. In such cases, LRU policy is employed as a default and all the requests are

sent through the cache.

4.5.4 Different caching policies

We evaluate different caching policies in Figure 4.11. In the figure, y-axis shows

latency, lifetime, and latency over lifetime normalized to the results of LRU caching

policy for each MSRC trace.

The results show that the adaptive caching policies work better than LRU when

the latency over lifetime metric is considered. Probability based caching policy is

on average 2.36 times better than LRU caching policy. Size based caching policy is

2.31 times, and hotness based caching policy is 1.41 times better than LRU, on an

average across the 13 traces.

Figure 4.11a shows that latency can increase with the adaptive policies when

compared to LRU policy. This is intentional as the adaptive policies are designed to

tradeoff latencies for improving lifetimes. It is also noted that latencies are designed

to stay below a target latency even with the adaptive policies. Figure 4.11b shows

that adaptive policies improve lifetimes significantly by appropriately distributing

the workloads. For all the 13 workloads, lifetimes are improved compared to LRU.

Trading latency for lifetime is especially beneficial for workloads with weak local-

ity, because weak locality can wear out cache significantly while low hit rates don’t

contribute significantly to improving performance. Among the 13 workloads, mds,

stg, web, prn, usr, proj, and src1 have weak locality. Our solution is selectively

caching data and avoids caching data with weak locality.

However, the proposed algorithm can be less effective than LRU caching policy

86

wdev rsrch ts mds stg src2 hm web prn usr proj src1 prxy (mean)
0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 L

a
te

n
cy

LRU

Hotness

Size

Probability

(a) Latency (lower is better)

wdev rsrch ts mds stg src2 hm web prn usr proj src1 prxy (mean)
10-2

10-1

100

101

102

N
o
rm

a
liz

e
d
 L

if
e
ti

m
e

LRU

Hotness

Size

Probability

(b) Lifetime (higher is better)

wdev rsrch ts mds stg src2 hm web prn usr proj src1 prxy (mean)
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 L

a
te

n
cy

 o
v
e
r

Li
fe

ti
m

e

LRU

Hotness

Size

Probability

(c) Latency over lifetime (lower is better)

Figure 4.11: Different caching policies, target latency = 0.4 ms

for workloads with strong locality. Under such workloads, decreasing the probability

of caching can result in significant loss in cache hit rates and performance. Among

the traces, hm, prxy, rsrch, and wdev are such workloads. Even though LRU policy is

employed in one of the sample caches, it may not always be selected. Caching history

87

1% 3% 5% 7% 10%
Cache Provisioning

10-2

10-1

100

N
o
rm

a
liz

e
d
 L

a
te

n
cy

 o
v
e
r

Li
fe

ti
m

e LRU

Hotness

Size

Probability

Figure 4.12: Latency over lifetime vs. cache provisioning

of adaptive cache is different from the history of a pure LRU cache. As a result, even

when the adaptive algorithm adapts caching policy towards LRU, the performance

may lag due to the differences in working sets in the cache when different policies

are employed during the bursts.

4.5.5 Cache provisioning

The impact of the cache provisioning on latency over lifetime is shown in Figure

4.12. In the figure, the results are normalized to the result of LRU with 1% cache

provisioning.

The figure shows that higher cache provisioning improves latency over lifetime

by both reducing latency and enhancing lifetime. We find that the average latency

across all the traces increases by less than 40% for all the adaptive policies compared

to LRU at all the levels of cache provisioning. The adaptive policies improve lifetimes

by significantly more than this at all the levels of cache provisioning to improve the

88

1.0 0.4 0.2
Target Latency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 L

a
te

n
cy

 o
v
e
r

Li
fe

ti
m

e LRU

Hotness

Size

Probability

Figure 4.13: Latency over lifetime vs. target latencies

overall metric of latency over lifetime.

4.5.6 Target latency

The target latency prevents adaptive workload classifiers from sending too much

workload directly to main storage and under-utilize high-end SSD cache. Figure 4.13

observes the behavior of cache as the target latency is varied.

The results in Figure 4.13 show the trade-off between latency and lifetime clearly.

The latency over lifetime is smaller (or shows more improvement) when the la-

tency constraint is relaxed. Larger latency targets provide more opportunities for

performance-lifetime trade-offs, thus, enhancing the benefits from the adaptive ap-

proach.

4.5.7 Sampling rate

We used a sampling rate of 1% in this section. When we increase the sampling

rate, we can expect more accurate optimal threshold estimation. However, increasing

89

1% 5% 10%
Sampling Rate

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 L

a
te

n
cy

 o
v
e
r

Li
fe

ti
m

e LRU

Hotness

Size

Probability

Figure 4.14: Latency over lifetime vs. sampling rates

sampling rate reduces the amount of workload (and the size of the cache) which

benefits from the optimal threshold selection. For example, 99% of workload can be

distributed with 1% sampling rate, while 90% of workload can be distributed by a

more accurate threshold with 10% sampling rate.

The results from different sampling rates are shown in Figure 4.14. The results

show that for the workloads considered in this section, 1% sampling rate provides

better benefits.

It is noted that for higher sampling rates, we can use smaller observation periods

such that the threshold can follow the optimal value faster. At higher sampling

rates, shorter timeframes may suffice to provide sufficient sampled data to estimate

the thresholds accurately.

90

4.5.8 Write amplification

This section assumed equal write amplification in cache and storage. When this

is not the case, the lifetimes can be modified to appropriately account for them in

Equation (4.1) and (4.2), based on observed statistics.

w′s = βs ·
(mr · r +mw · w) · d

Ns · cs

w′c = βc ·
mr · r + w

Nc · cc

(4.12)

where βs and βc are observed write amplification in the cache and the storage,

respectively.

91

5. RELATED WORK

SSDs are promising storage components in modern storage systems while their

reliability is still a concern for users. The reliability of SSD is widely studied from

the design of powerful ECCs [7, 37, 39, 57], to FTL algorithms [8, 14, 20, 31, 45], to

wear-leveling [6] and to RAID [46] over SSD arrays [2, 26,36,38,40,60].

Many studies [5, 19, 58, 61, 62] have investigated the error behavior of MLC flash

memory. Among them, we exploited the results from [58] in modeling the raw bit

error rates in Section 2 and 3.

The work in [37] looks at reliability of MLC flash memory with ECC, and esti-

mates uncorrectable bit error rate using a binomial distribution. Unlike this study,

we used a Markov model and considered the time-varying nature of bit error rates.

Several previous studies [4, 9, 10, 24, 25] analyzed the impact of write amplifica-

tion on the performance of SSD storage systems. We broadened the sources of write

amplification from garbage collection to include ECC recovery and parity protec-

tion, and we mainly focus our attention on the impact of write amplification on the

reliability SSD storage systems.

Reliability analysis of memory or disk scrubbing is discussed in [49, 54]. They

have already shown how scheduling of scrubbing impacts the reliability of DRAM

or magnetic disk drives. Our work here considers the exponential increase of bit

error rate of flash memory with increasing write counts to estimate the impact of

scrubbing. Earlier work [53] has shown that when increased disk access can lead to

lower lifetimes of HDDs, an optimal scrubbing rate may be desirable to increase data

lifetime.

Commercial vendors are offering eMLC devices [50, 56] improving MLC lifetime

92

characteristics. They employ a number of protection techniques such as wear-leveling

and parity protection which are mostly employed or assumed in our model.

Novel coding techniques for MLC flash memory are proposed to reduce the num-

ber of erase operations [27,28].

System level protection schemes have shown their effectiveness in HDD storage

systems for decades. These studies range from analysis [46,60] to system level mech-

anisms [44,48] for an array of independent disks (RAID).

Many studies have investigated SSD based RAID arrays. A notable study [26]

considered SSD based RAID in terms of performance. They discuss the behavior

of random writes and parity updates, and conclude striping provides much higher

throughput than RAID5. We consider the impact of write workload on reliability.

Some studies [16,55] have considered different architectures to reduce the parity

update performance penalty. The work in [16] employed a cache for parity data. The

work in [55] introduced a HDD write cache to reduce write counts in an SSD array.

Another work [36] also employed HDDs as a parity storage to relieve the overhead

of parity. These works require additional hardware while we consider RAID systems

with SSDs only.

Harmonia [33] coordinated garbage collection processes of SSDs in idle time to

prevent the garbage collection process from slowing down overall performance. The

focus of the earlier study is on performance while we focus on reliability.

Problem of simultaneous wearing out of SSDs in SSD based RAID was considered

in the study of differential RAID [2]. The diff-RAID tries to wear out SSDs unevenly

to minimize the chance of simultaneous failures, based on the rated write cycles

without considering the potential variability in those ratings. We have shown the

possible ranges of lifetimes considering different characteristics of the workload.

Employing SSD cache for HDD storage systems is a practical configuration to

93

exploit lower latency of SSDs. Many studies [3, 12, 22, 30, 35, 52] have investigated

different issues in employing an SSD cache for HDD based storage systems. The

work in [30] studies the feasibility of flash as a disk cache and proposes to improve

SSD cache’s performance by separating read and write caches. Another work in [52]

provided functionalities such as data protection and silent data eviction to SSD cache.

The study in [22] examined interesting issues when SSDs are placed on the client

side in a large scale storage system. The work in [35] introduces a deduplication

technique and optimizes capacity usage of an SSD cache.

A recent work [43] controls the effective size of SSD cache considering write

amplification from less efficient garbage collection when space utilization of the SSD

cache is higher. They control the valid data size in SSD cache and find the optimal

space utilization of the SSD cache where performance and lifetime of the SSD cache

is maximized. Unlike this study, we balance those metrics of both SSD cache and

SSD main storage at the same time.

Two recent studies [41] and [34] propose a device controller to balance faster and

more reliable (SLC) flash and slower and less reliable (MLC) flash in terms of both

performance and lifetime. The work [41] controls workload distribution by sending

a portion of frequent (hot) write workload to SLC and the rest to MLC in an SSD.

They use a control system to adjust wearing and latency of SLC and MLC flash

chips. Unlike those studies, this paper considers an all SSD array where faster SSDs

are used as a cache for slower SSDs. We consider both reads and writes since read

cache misses result in writes in the cache.

The work in [34] assumes that flash chips can be switched between SLC and

MLC and controls the amount of flash in SLC mode and MLC mode considering the

workload.

The related work [11] improves the lifetime of SSD main storage by efficient

94

usage of NVRAM cache. They increase the cache hit rate and reduce write workload

in main storage by dividing cache space into four classes (clean, dirty, frequent,

recent) and by adjusting those four spaces in an SSD cache. Unlike this study, we

employ less reliable SLC flash as cache and consider the tradeoff between lifetime

and performance in such an all SSD array.

The recent work [63] counts read cache misses as write amplification in high-

end SSD cache, and proposed hotness based caching policy with a new garbage

collection policy. Their focus is on the SSD cache and do not consider the latency

and lifetime of main storage. They use cache hit rate as a performance metric while

we use average latency over lifetime. In addition, their hotness and request size based

caching policies use static classifiers while we employ adaptive variable classifiers.

95

6. CONCLUSION

Traditional protection schemes usually increase the number of writes internally to

provide data protection. The increased number of writes has not been a problem for

the reliability of the systems based on hard disks. However, when they are employed

in SSD storage systems whose reliability is highly dependent on the number of writes,

the efficacy of these protection schemes has not been clear. The objectives of this

study are to understand the implications of the increased number of writes from the

protection schemes on the reliability of the storage systems based on SSDs.

Section 2 studied the implications of write amplification at device level from ECC

recovery. A Markov model was exploited to show that write amplification can have

a significant impact on the lifetime of an SSD. Our analysis reveals that lifetime loss

due to the write amplification is about 50% and a considerable amount of loss comes

from frequent ECC recovery. We proposed threshold-based ECC which leaves errors

on flash until it accumulates bit errors to a certain threshold. Our new scheme is

shown to increase lifetime by up to 40%.

Section 3 analyzed the relation between parity protection and the lifetime of SSD

arrays at system level. Parity update increases write workload and space utilization

which can severely degrade the reliability of SSD arrays. According to our analytical

model and evaluation, RAID5 is conditionally better in lifetime than striping due

to the overhead of parity. Different factors such as the number of devices and the

amount of data are explored, and the results imply that RAID5 is not universally

beneficial in improving the reliability of SSD based systems. Our results show that

the lifetime of RAID5 can be worse than that of striping in some cases.

In Section 4, we observed that mixed SSD arrays using different classes of SSDs

96

in a hierarchical manner should consider both latency and lifetime. We showed that

high-end SSD caches can wear out faster than low-end SSD main storage under

enterprise workloads. We argued that caching policies should balance the latency

and lifetime of cache and storage at the same time. We proposed a sampling based

method for adaptive workload distribution in mixed SSD arrays. The proposed

solution enables fine-grained control of workload distribution and balances latency

and lifetime effectively in such SSD arrays. Our trace-driven simulations show that

the proposed method is adaptive to different workloads and can improve latency over

lifetime metric by up to 2.36 times over a pure LRU policy.

97

REFERENCES

[1] Anandtech. Intel ssd sd p3700 review: The pcie ssd transition begins

with nvme. http://www.anandtech.com/show/8104/intel-ssd-dc-p3700-

review-the-pcie-ssd-transition-begins-with-nvme/3.

[2] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia Malkhi.

Differential raid: Rethinking raid for ssd reliability. ACM Transactions on Stor-

age, 6(2):4:1–4:22, July 2010.

[3] Bcache. http://bcache.evilpiepirate.org/.

[4] Simona Boboila and Peter Desnoyers. Write endurance in flash drives: Measure-

ments and analysis. In Proceedings of the 8th USENIX Conference on File and

Storage Technologies, FAST’10, pages 9–9, Berkeley, CA, USA, 2010. USENIX

Association.

[5] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. Error patterns in mlc

nand flash memory: Measurement, characterization, and analysis. In Proceed-

ings of the Conference on Design, Automation and Test in Europe, DATE ’12,

pages 521–526, San Jose, CA, USA, 2012. EDA Consortium.

[6] Li-Pin Chang. On efficient wear leveling for large-scale flash-memory storage

systems. In Proceedings of the 2007 ACM Symposium on Applied Computing,

SAC ’07, pages 1126–1130, New York, NY, USA, 2007. ACM.

[7] Bainan Chen, Xinmiao Zhang, and Zhongfeng Wang. Error correction for multi-

level nand flash memory using reed-solomon codes. In Signal Processing Systems,

2008. SiPS 2008. IEEE Workshop on, pages 94–99, Oct 2008.

98

http://www.anandtech.com/show/8104/intel-ssd-dc-p3700-review-the-pcie-ssd-transition-begins-with-nvme/3
http://www.anandtech.com/show/8104/intel-ssd-dc-p3700-review-the-pcie-ssd-transition-begins-with-nvme/3
http://bcache.evilpiepirate.org/

[8] Feng Chen, Tian Luo, and Xiaodong Zhang. Caftl: A content-aware flash trans-

lation layer enhancing the lifespan of flash memory based solid state drives. In

Proceedings of the 9th USENIX Conference on File and Stroage Technologies,

FAST’11, pages 6–6, Berkeley, CA, USA, 2011. USENIX Association.

[9] Peter Desnoyers. Mathematical models of write amplification in ftls. Slides, pre-

sented in NVRAMOS 2011, http://dcslab.hanyang.ac.kr/nvramos11fall/

presentation/Desnoyers-NVRAMOS-2011.pdf, 2011.

[10] Peter Desnoyers. Analytic modeling of ssd write performance. In Proceedings

of the 5th Annual International Systems and Storage Conference, SYSTOR ’12,

pages 12:1–12:10, New York, NY, USA, 2012. ACM.

[11] Ziqi Fan, D.H.C. Du, and D. Voigt. In Mass Storage Systems and Technologies,

2014 30th Symposium on, MSST’14.

[12] FlashCache. https://github.com/facebook/flashcache/.

[13] Fujitsu. Fujitsu primergy servers solution-specific evaluation of ssd write

endurance. http://globalsp.ts.fujitsu.com/dmsp/Publications/public/

wp-solution-specific-evaluation-of-ssd-write-endurance-ww-en.pdf.

[14] Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories.

ACM Computer Survey, 37(2):138–163, June 2005.

[15] J. Gathman, A. McPadden, and G. Tressler. The need for standardization in

the enterprise ssd product segment. Presentation in Flash Memory Summit,

Santa Clara, CA, 2013.

[16] Kevin Greenan, Darrell D. E. Long, Ethan L. Miller, Thomas Schwarz, and

Avani Wildani. Building flexible, fault-tolerant flash-based storage systems.

99

http://dcslab.hanyang.ac.kr/nvramos11fall/presentation/Desnoyers-NVRAMOS-2011.pdf
http://dcslab.hanyang.ac.kr/nvramos11fall/presentation/Desnoyers-NVRAMOS-2011.pdf
https://github.com/facebook/flashcache/
http://globalsp.ts.fujitsu.com/dmsp/Publications/public/wp-solution-specific-evaluation-of-ssd-write-endurance-ww-en.pdf
http://globalsp.ts.fujitsu.com/dmsp/Publications/public/wp-solution-specific-evaluation-of-ssd-write-endurance-ww-en.pdf

In Proceedings of the Fifth Workshop on Hot Topics in System Dependability,

HotDep’09.

[17] E. Grochowski. Future technology challenges for nand flash and hdd products.

Presentation in Flash Memory Summit, Santa Clara, CA, 2012.

[18] Laura M. Grupp, John D. Davis, and Steven Swanson. The bleak future of

nand flash memory. In Proceedings of the 10th USENIX Conference on File and

Storage Technologies, FAST’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX

Association.

[19] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P.H. Siegel,

and J.K. Wolf. In Microarchitecture, 2009. 42nd Annual IEEE/ACM Interna-

tional Symposium on, MICRO-42.

[20] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. Dftl: A flash translation

layer employing demand-based selective caching of page-level address mappings.

In Penn State University, 2008.

[21] HGST. UltrastarTM ssd800mh. http://www.hgst.com/tech/techlib.nsf/

techdocs/07447FAD6BD1A4C288257B48000A8DCA/$file/US_SSD800MH_ds.

pdf.

[22] David A. Holland, Elaine Angelino, Gideon Wald, and Margo I. Seltzer. Flash

caching on the storage client. In Presented as part of the 2013 USENIX Annual

Technical Conference, USENIX ATC’13.

[23] HP. Hp enterprise solid state drive. http://www8.hp.com/h20195/v2/GetPDF.

aspx%2F4AA4-7186ENW.pdf.

[24] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman

Pletka. Write amplification analysis in flash-based solid state drives. In Proceed-

100

http://www.hgst.com/tech/techlib.nsf/techdocs/07447FAD6BD1A4C288257B48000A8DCA/$file/US_SSD800MH_ds.pdf
http://www.hgst.com/tech/techlib.nsf/techdocs/07447FAD6BD1A4C288257B48000A8DCA/$file/US_SSD800MH_ds.pdf
http://www.hgst.com/tech/techlib.nsf/techdocs/07447FAD6BD1A4C288257B48000A8DCA/$file/US_SSD800MH_ds.pdf
http://www8.hp.com/h20195/v2/GetPDF.aspx%2F4AA4-7186ENW.pdf
http://www8.hp.com/h20195/v2/GetPDF.aspx%2F4AA4-7186ENW.pdf

ings of SYSTOR 2009: The Israeli Experimental Systems Conference, SYSTOR

’09, pages 10:1–10:9, New York, NY, USA, 2009. ACM.

[25] A. Jagmohan, M. Franceschini, and L. Lastras. Write amplification reduction

in nand flash through multi-write coding. In Mass Storage Systems and Tech-

nologies, 2010 IEEE 26th Symposium on, MSST’10.

[26] Nikolaus Jeremic, Gero Mühl, Anselm Busse, and Jan Richling. The pitfalls of

deploying solid-state drive raids. In Proceedings of the 4th Annual International

Conference on Systems and Storage, SYSTOR ’11, pages 14:1–14:13, New York,

NY, USA, 2011. ACM.

[27] Anxiao Jiang, V. Bohossian, and J. Bruck. Rewriting codes for joint informa-

tion storage in flash memories. Information Theory, IEEE Transactions on,

56(10):5300–5313, October 2010.

[28] Anxiao (Andrew) Jiang, Robert Mateescu, Eitan Yaakobi, Jehoshua Bruck,

Paul H. Siegel, Alexander Vardy, and Jack K. Wolf. Storage coding for wear

leveling in flash memories, October 2010.

[29] Solid state drives no better than others, survey says, 2012. http://www.

pcworld.com/article/213442.

[30] Taeho Kgil, D. Roberts, and T. Mudge. Improving nand flash based disk caches.

In Computer Architecture, 2008. 35th International Symposium on, ISCA’08,

pages 327–338, June 2008.

[31] Hyojun Kim and Seongjun Ahn. Bplru: A buffer management scheme for im-

proving random writes in flash storage. In Proceedings of the 6th USENIX Con-

ference on File and Storage Technologies, FAST’08, pages 16:1–16:14, Berkeley,

CA, USA, 2008. USENIX Association.

101

http://www.pcworld.com/article/213442
http://www.pcworld.com/article/213442

[32] Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu. Eval-

uating phase change memory for enterprise storage systems: A study of caching

and tiering approaches. In Proceedings of the 12th USENIX Conference on File

and Storage Technologies, FAST’14.

[33] Youngjae Kim, S. Oral, G.M. Shipman, Junghee Lee, D.A. Dillow, and Feiyi

Wang. In Mass Storage Systems and Technologies, 2011 IEEE 27th Symposium

on, MSST’11.

[34] Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim, and Junghwan Kim.

Flexfs: A flexible flash file system for mlc nand flash memory. In Proceedings

of the 2009 Conference on USENIX Annual Technical Conference, USENIX’09,

pages 9–9, Berkeley, CA, USA, 2009. USENIX Association.

[35] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, and

Grant Wallace. Nitro: A capacity-optimized ssd cache for primary storage. In

2014 USENIX Annual Technical Conference, USENIX ATC’14.

[36] Bo Mao, Hong Jiang, Dan Feng, Suzhen Wu, Jianxi Chen, Lingfang Zeng, and

Lei Tian. In Parallel Distributed Processing, 2010 IEEE International Sympo-

sium on, IPDPS’10.

[37] N. Mielke, T. Marquart, Ning Wu, J. Kessenich, H. Belgal, Eric Schares,

F. Trivedi, E. Goodness, and L.R. Nevill. In Reliability Physics Symposium,

2008. IEEE International, IRPS’08.

[38] Sangwhan Moon and A. L. Narasimha Reddy. Don’t let raid raid the lifetime of

your ssd array. In Proceedings of the 5th USENIX Conference on Hot Topics in

Storage and File Systems, HotStorage’13, pages 7–7, Berkeley, CA, USA, 2013.

USENIX Association.

102

[39] Sangwhan Moon and A.L.N. Reddy. Write amplification due to ecc on flash

memory or leave those bit errors alone. In Mass Storage Systems and Technolo-

gies, 2012 IEEE 28th Symposium on, MSST’12.

[40] Sangwhan Moon and A.L.N. Reddy. Does raid improve the lifetime of ssd arrays?

In ACM Transactions on Storage (accepted), 2015.

[41] M. Murugan and D.H.C. Du. In Modeling, Analysis Simulation of Computer

and Telecommunication Systems, 2012 IEEE 20th International Symposium on,

MASCOTS’12.

[42] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-

loading: Practical power management for enterprise storage. ACM Transactions

on Storage, 4(3):10:1–10:23, November 2008.

[43] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H. Noh. Caching less

for better performance: Balancing cache size and update cost of flash memory

cache in hybrid storage systems. In Proceedings of the 10th USENIX Conference

on File and Storage Technologies, FAST’12, pages 25–25, Berkeley, CA, USA,

2012. USENIX Association.

[44] John Ousterhout and Fred Douglis. Beating the i/o bottleneck: A case for

log-structured file systems. SIGOPS Operating System Review, 23(1):11–28,

January 1989.

[45] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joonwon

Lee. Cflru: A replacement algorithm for flash memory. In Proceedings of the

2006 International Conference on Compilers, Architecture and Synthesis for

Embedded Systems, CASES ’06, pages 234–241, New York, NY, USA, 2006.

ACM.

103

[46] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant

arrays of inexpensive disks (raid). In Proceedings of the 1988 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’88, pages 109–116,

New York, NY, USA, 1988. ACM.

[47] Pure Storage, FA-400. https://www.purestorage.com/products/flash-

array-m/hardware-fa-400.html.

[48] Mendel Rosenblum and John K. Ousterhout. The design and implementation of

a log-structured file system. ACM Transactions on Computer Systems, 10(1):26–

52, February 1992.

[49] A.M. Saleh, J.J. Serrano, and J.H. Patel. Reliability of scrubbing recovery-

techniques for memory systems. Reliability, IEEE Transactions on, 39(1):114–

122, Apr 1990.

[50] Sandisk. GuardianTM technology platform. http://www.sandisk.com/assets/

docs/WP003_Guardian_Technology_Platform_FINAL.pdf.

[51] Sandisk. The why and how of ssd over provisioning. http://www.sandisk.

com/assets/docs/WP004_OverProvisioning_WhyHow_FINAL.pdf.

[52] Mohit Saxena, Michael M. Swift, and Yiying Zhang. Flashtier: A lightweight,

consistent and durable storage cache. In Proceedings of the 7th ACM European

Conference on Computer Systems, EuroSys ’12, pages 267–280, New York, NY,

USA, 2012. ACM.

[53] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. Understanding latent

sector errors and how to protect against them. ACM Transactions on Storage,

6(3):9:1–9:23, September 2010.

104

https://www.purestorage.com/products/flash-array-m/hardware-fa-400.html
https://www.purestorage.com/products/flash-array-m/hardware-fa-400.html
http://www.sandisk.com/assets/docs/WP003_Guardian_Technology_Platform_FINAL.pdf
http://www.sandisk.com/assets/docs/WP003_Guardian_Technology_Platform_FINAL.pdf
http://www.sandisk.com/assets/docs/WP004_OverProvisioning_WhyHow_FINAL.pdf
http://www.sandisk.com/assets/docs/WP004_OverProvisioning_WhyHow_FINAL.pdf

[54] Thomas J. E. Schwarz, Qin Xin, Ethan L. Miller, Darrell D. E. Long, Andy

Hospodor, and Spencer Ng. Disk scrubbing in large archival storage systems.

In Proceedings of the The IEEE Computer Society’s 12th Annual International

Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-

munications Systems, MASCOTS’04, pages 409–418, Washington, DC, USA,

2004. IEEE Computer Society.

[55] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted

Wobber. Extending ssd lifetimes with disk-based write caches. In Proceedings

of the 8th USENIX Conference on File and Storage Technologies, FAST’10,

pages 8–8, Berkeley, CA, USA, 2010. USENIX Association.

[56] Spec Inc. Engineering mlc flash-based ssds to reduce total cost of ownership

in enterprise ssd deployments. Presentation in Flash Memory Summit, Santa

Clara, CA, 2011.

[57] Fei Sun, Ken Rose, and Tong Zhang. On the use of strong bch codes for im-

proving multilevel nand flash memory storage capacity. In in IEEE Workshop

on Signal Processing Systems: Design and Implementation, SiPS’06.

[58] Hairong Sun, Pete Grayson, and Bob Wood. Quantifying reliability of solid-state

storage from multiple aspects. In Proceedings of the 7th IEEE International

Workshop on Storage and Network Architecture and Parallel I/O, SNAPI’11,

2011.

[59] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, and An-

drew Warfield. Characterizing storage workloads with counter stacks. In

11th USENIX Symposium on Operating Systems Design and Implementation,

OSDI’14.

105

[60] Qin Xin, E.L. Miller, T. Schwarz, D. D E Long, S.A. Brandt, and W. Litwin.

In Mass Storage Systems and Technologies, 2003 IEEE 20th Symposium on,

MSST’03.

[61] E. Yaakobi, L. Grupp, P.H. Siegel, S. Swanson, and J.K. Wolf. Characterization

and error-correcting codes for tlc flash memories. In Computing, Networking

and Communications, 2012 International Conference on, pages 486–491, Jan

2012.

[62] E. Yaakobi, Jing Ma, L. Grupp, P.H. Siegel, S. Swanson, and J.K. Wolf. Er-

ror characterization and coding schemes for flash memories. In GLOBECOM

Workshops, 2010 IEEE, pages 1856–1860, Dec 2010.

[63] Jingpei Yang, Ned Plasson, Greg Gillis, and Nisha Talagala. Hec: Improving

endurance of high performance flash-based cache devices. In Proceedings of the

6th International Systems and Storage Conference, SYSTOR ’13, pages 10:1–

10:11, New York, NY, USA, 2013. ACM.

106

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Device Level Protection Schemes
	System Level Protection Schemes I: Parity Protection
	System Level Protection Schemes II: A Mixed SSD Array

	Device level protection schemes
	Device level protection schemes
	Error correction codes (ECCs)
	Scrubbing
	Wear-leveling and garbage collection
	Write amplification

	Reliability model
	Raw bit error rate
	Uncorrectable page error probability
	Mean time to data loss
	Write amplification

	Evaluation
	Practical issues
	Sources of degradation

	Threshold based ECC

	System Level Protection Schemes I: Parity Protection
	System level protection schemes
	Parity Protection
	Write amplification

	SSD based RAID
	Lifetime model
	Uncorrectable page error rate
	Data loss rate
	Mean time to data loss
	Write amplification

	Simulation
	Evaluation
	Simulation environment
	Review of analysis of single SSD
	Simulation
	The number of devices
	The amount of data
	Garbage collection policy
	Advanced techniques
	Read:write ratio
	Workload intensity
	Workload characteristics
	Device failure rate
	Non-uniform workload
	Erase block size
	Spare SSD
	Scalability
	Summary of evaluation

	System Level Protection Schemes II: A Mixed SSD Array
	System Level Protection Schemes : A Mixed SSD Array
	Example

	Problem Statement
	Caching policies
	Request size
	Hotness
	Probabilistic caching policy

	Adaptive workload distribution
	Static threshold based analysis
	Sampling based approach

	Evaluation
	Simulator
	Simulation environment
	Adaptive threshold algorithm
	Different caching policies
	Cache provisioning
	Target latency
	Sampling rate
	Write amplification

	 Related Work
	Conclusion
	REFERENCES

