50,372 research outputs found
Clamp-mount device
A clamp-mount device is disclosed for mounting equipment to an associated I-beam and the like structural member of the type having oppositely extending flanges wherein the device comprises a base and a pair of oppositely facing clamping members carried diagonally on the base clamping flanges therebetween and having flange receiving openings facing one another. Lock means are carried diagonally by the base opposite the clamping members locking the flanges in the clamping members. A resilient hub is carried centrally of the base engaging and biasing a back side of the flanges maintaining tightly clamped and facilitating use on vertical as well as horizontal members. The base turns about the hub to receive the flanges within the clamping members. Equipment may be secured to the base by any suitable means such as bolts in openings. Slidable gate latches secure the hinged locks in an upright locking position. The resilient hub includes a recess opening formed in the base and a rubber-like pad carried in this opening being depressably and rotatably carried therein
Flanged major modular assembly jig
Weldless methods and means are described for securing flanges to the projecting ends of an unmachined box beam framework in such a manner that the flanged structure may be reused without modification. And one framework may be readily assembled to another by simply matching the flanges together and passing connecting members between performed holes in the structures
Tire/wheel concept
A tire and wheel assembly is disclosed in which a low profile pneumatic tire (having sidewalls which deflect inwardly under load) and a wheel (having a rim featuring a narrow central channel and extended rim flanges) form the combination. The extended rim flanges support the tire sidewalls under static and dynamic loading conditions to produce a combination particularly suited to aircraft applications
Experimental Study of Ultra Shallow Floor Beams (USFB) with Perforated Steel Sections
ABSTRACT: In modern building construction design, floor spans are becoming longer. Hence, steel framed structures have become more competitive when compared with traditional reinforced concrete framed buildings. In order to minimise the structural section of the composite sections, and for economic reasons, steel perforated beams are designed to act compositely with the floor slab. When the concrete slab lies within the steel flanges, as in the Ultra Shallow Floor Beam (USFB), there is an additional benefit when considering fire resistance. The aim of this study is to investigate the contribution of the concrete in composite cellular beams in the case where the concrete slab lies between the beam flanges of a steel section, when resisting vertical shear forces. The concrete between the flanges enhances the load-carrying capacity by providing a load path to transfer the shear force. Four specimens of steel-concrete composite beams with web openings in the steel section were tested in this study. One bare steel section with web openings was also tested as a comparison. This is the first such investigation of the failure mode under shear resistance (Vierendeel action) of the Ultra Shallow Floor Beam. In the test specimens, the web opening diameter is 76% of the beam depth, which is the largest currently available. This represents the worst case in terms of Vierendeel bending forces generated in the vicinity of the web openings. The smaller the hole is, the easier it is for the trapped concrete between the flanges to transfer shear across the opening. The results from the composite beam tests show a significant increase in shear resistance. The percentage of the shear capacity improvement of the particular case is presented herein as well as the failure mode of the composite beams. The shear enhancement demonstrated in this study has been utilised software that is used in design practice
Flange design for large-scale modular assembly jigs
Technique incorporates weld-free method for securing flanges to projecting ends of unmachined box-beam framework so flanged structure may be reused without modification. One such framework may be readily assembled to another by simply matching flanges together and passing connecting members between preformed holes in structures
Spherical joint connects axially misaligned flanges
Interconnecting straight tube connects axially misaligned flanges in a duct assembly. It adjusts to accommodate variations in relative location of the flanges by pivoting. Adjustment is by spherical mating faces and a spherical-faced indexing swivel flange for bolting backup
Design standards for low-profile flanges
Analysis of low-profile flange is based on thin shell theory and simple ring theory. Program produces comprehensive design procedure with subsequent stress and deformation analysis. Program was written in FORTRAN IV for UNIVAC 1108 computer
Spherical shield Patent
Flexible bellows joint shielding sleeve for propellant transfer pipeline
Analysis of the Torsional Load Capacity of V-Section Band Clamps
This paper investigates the torsional load capacity of three sizes of V-section band clamps when assembled onto rigid flanges by comparing experimental data with a developed theoretical model. This mode of failure is of particular interest for turbocharger applications where, in use, they are subjected to torsional loading via thermal and vibrational effects. The theoretical model developed allows the impact on torsional load capacity of a number of joint parameters to be investigated and good correlation of the results, incorporating variations in coefficients of friction and dimensions, has been shown for the two larger band sizes. For smaller diameter bands, the experimental data suggests that as the band is tightened, contact with the flange is localised rather than being over the full circumference of the band. The coefficients of friction, in particular that between the flanges, and the position of the contact point between band and flange have been shown to have a significant impact on the theoretical torsional load capacity of V-section band clamps
Development of structural test articles from magnesium-lithium and beryllium
Study on the fabrication and testing of a magnesium-lithium box beam shows the formability and machinability characteristics of that alloy to be excellent. Results of forming tests for shrink and stretch flanges show values for both flange heights that may be used in future beryllium design
- …
