6,337 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Consensus Tracking for Multiagent Systems Under Bounded Unknown External Disturbances Using Sliding-PID Control

    Get PDF
    This paper is devoted to the study of consensus tracking for multiagent systems under unknown but bounded external disturbances. A consensus tracking protocol which is a combination between the conventional PID controller and sliding mode controller named sliding-PID protocol is proposed. The protocol is applied to the consensus tracking of multiagent system under bounded external disturbances where results showed high effectiveness and robustness

    Event-triggered robust distributed state estimation for sensor networks with state-dependent noises

    Get PDF
    This paper is concerned with the event-triggered distributed state estimation problem for a class of uncertain stochastic systems with state-dependent noises and randomly occurring uncertainties over sensor networks. An event-triggered communication scheme is proposed in order to determine whether the measurements on each sensor should be transmitted to the estimators or not. The norm-bounded uncertainty enters into the system in a random way. Through available output measurements from not only the individual sensor but also its neighbouring sensors, a sufficient condition is established for the desired distributed estimator to ensure that the estimation error dynamics are exponentially mean-square stable. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities, and then the explicit expression is given for the distributed estimator gains. Finally, a simulation example is provided to show the effectiveness of the proposed event-triggered distributed state estimation scheme.This work was supported in part by the Deanship of Scientific Research (DSR) at King Abdulaziz University of Saudi Arabia under Grant 16-135-35-HiCi, the National Natural Science Foundation of China under Grants 61374127 and 61329301, the Scientific and Technology Research Foundation of Heilongjiang Education Department of China under Grant 12541061 and 12511014, and the Alexander von Humboldt Foundation of Germany

    Consensus disturbance rejection for Lipschitz nonlinear multi-agent systems with input delay: a DOBC approach

    Get PDF
    In this paper, a new predictor-based consensus disturbance rejection method is proposed for high-order multi agent systems with Lipschitz nonlinearity and input delay. First, a distributed disturbance observer for consensus control is developed for each agent to estimate the disturbance under the delay constraint. Based on the conventional predictor feedback approach, a non-ideal predictor based control scheme is constructed for each agent by utilizing the estimate of the disturbance and the prediction of the relative state information. Then, rigorous analysis is carried out to ensure that the extra terms associated with disturbances and nonlinear functions are properly considered. Sufficient conditions for the consensus of the multi-agent systems with disturbance rejection are derived based on the analysis in the framework of Lyapunov-Krasovskii functionals. A simulation example is included to demonstrate the performance of the proposed control scheme. (C) 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.National Natural Science Foundation of China [61673034]SCI(E)ARTICLE1,SI298-31535
    • …
    corecore