1,436,512 research outputs found

    Digital computing cardiotachometer

    Get PDF
    A tachometer is described which instantaneously measures heart rate. During the two intervals between three succeeding heart beats, the electronic system: (1) measures the interval by counting cycles from a fixed frequency source occurring between the two beats; and (2) computes heat rate during the interval between the next two beats by counting the number of times that the interval count must be counted to zero in order to equal a total count of sixty times (to convert to beats per minute) the frequency of the fixed frequency source

    Fast Ensemble Smoothing

    Full text link
    Smoothing is essential to many oceanographic, meteorological and hydrological applications. The interval smoothing problem updates all desired states within a time interval using all available observations. The fixed-lag smoothing problem updates only a fixed number of states prior to the observation at current time. The fixed-lag smoothing problem is, in general, thought to be computationally faster than a fixed-interval smoother, and can be an appropriate approximation for long interval-smoothing problems. In this paper, we use an ensemble-based approach to fixed-interval and fixed-lag smoothing, and synthesize two algorithms. The first algorithm produces a linear time solution to the interval smoothing problem with a fixed factor, and the second one produces a fixed-lag solution that is independent of the lag length. Identical-twin experiments conducted with the Lorenz-95 model show that for lag lengths approximately equal to the error doubling time, or for long intervals the proposed methods can provide significant computational savings. These results suggest that ensemble methods yield both fixed-interval and fixed-lag smoothing solutions that cost little additional effort over filtering and model propagation, in the sense that in practical ensemble application the additional increment is a small fraction of either filtering or model propagation costs. We also show that fixed-interval smoothing can perform as fast as fixed-lag smoothing and may be advantageous when memory is not an issue

    Unit Interval Editing is Fixed-Parameter Tractable

    Full text link
    Given a graph~GG and integers k1k_1, k2k_2, and~k3k_3, the unit interval editing problem asks whether GG can be transformed into a unit interval graph by at most k1k_1 vertex deletions, k2k_2 edge deletions, and k3k_3 edge additions. We give an algorithm solving this problem in time 2O(klogk)(n+m)2^{O(k\log k)}\cdot (n+m), where k:=k1+k2+k3k := k_1 + k_2 + k_3, and n,mn, m denote respectively the numbers of vertices and edges of GG. Therefore, it is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm implies the fixed-parameter tractability of the unit interval edge deletion problem, for which we also present a more efficient algorithm running in time O(4k(n+m))O(4^k \cdot (n + m)). Another result is an O(6k(n+m))O(6^k \cdot (n + m))-time algorithm for the unit interval vertex deletion problem, significantly improving the algorithm of van 't Hof and Villanger, which runs in time O(6kn6)O(6^k \cdot n^6).Comment: An extended abstract of this paper has appeared in the proceedings of ICALP 2015. Update: The proof of Lemma 4.2 has been completely rewritten; an appendix is provided for a brief overview of related graph classe

    Sensitivity Analysis Using a Fixed Point Interval Iteration

    Get PDF
    Proving the existence of a solution to a system of real equations is a central issue in numerical analysis. In many situations, the system of equations depend on parameters which are not exactly known. It is then natural to aim proving the existence of a solution for all values of these parameters in some given domains. This is the aim of the parametrization of existence tests. A new parametric existence test based on the Hansen-Sengupta operator is presented and compared to a similar one based on the Krawczyk operator. It is used as a basis of a fixed point iteration dedicated to rigorous sensibility analysis of parametric systems of equations

    Estimation of Gini Index within Pre-Specied Error Bound

    Get PDF
    Gini index is a widely used measure of economic inequality. This article develops a general theory for constructing a confidence interval for Gini index with a specified confidence coefficient and a specified width. Fixed sample size methods cannot simultaneously achieve both the specified confidence coefficient and specified width. We develop a purely sequential procedure for interval estimation of Gini index with a specified confidence coefficient and a fixed margin of error. Optimality properties of the proposed method, namely first order asymptotic efficiency and asymptotic consistency are proved. All theoretical results are derived without assuming any specific distribution of the data
    corecore