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Abstract
Consider the regression model y; = o + fx;+¢; and the problem of constructing a confidence
interval for a/f with | @ | > au) and 8 € (0,8°) where a. > 0 and 8° > 0. Uniformity down
to 8 = 0 is a major difficulty. In fact any procedure based on a fixed sample size, will have
either infinite expected width or zero confidence (Gleser and Hwang 1987), confidence being the
infimum of the coverage probability. Sequential sampling is used to construct fixed length
intervals of the form

(&,/8,-h, 6,/8,+h)

where 7 is an integer valued stopping time, &, and f, are the least squares estimators for o and
B based on 7-observations and h is the half-width of the interval. Stopping times 7, are derived
so that these intervals have coverage probabilities converging to a set value o as h = 0. This
convergence is uniform down to § = 0. Furthermore the predictors x; may be chosen adaptively.
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A Fixed-Width Interval for a/3 in Regression

By Daniel A. Coleman !
Universidad Carlos III de Madrid

Consider the regression model y; = a + fz; + ¢; and the problem of constructing a confidence
interval for a/f with |a| > a. and 8 € (0,8*) where a. > 0 and $* > 0. Uniformity down
to 8 = 0 is a major difficulty. In fact any procedure based on a fixed sample size, will have
either infinite expected width or zero confidence (Gleser and Hwang 1987), confidence being
the infimum of the coverage probability. Sequential sampling is used to construct fixed length
intervals of the form

(dr/,@r - h,&‘r/ﬂ"r + h)

where 7 is an integer valued stopping time, &, and 3, are the least squares estimators for a and
B based on T-observations and h is the half-width of the interval. Stopping times 7, are derived
so that these intervals have coverage probabilities converging to a set value 4 as h — 0. This
convergence is uniform down to 8 = 0. Furthermore the predictors z; may be chosen adaptively.

1 An interval for o/
Fixed-width, asymptotic confidence intervals are set for a/f3, from the model
Yi=a+z0+e. (1)
Intervals are of the form
(&+/Br — hyér /By + R), (2)

where 7 is an integer valued stopping time, é.,/ B, is the ratio of the least squares estimators

based on 7 observations and A is the half-length. Stopping times 7, are derived so that these

confidence intervals have coverage probabilities converging to the desired coverage probability
€ (0,1) as h — 0 or as a — 00 where

\/q’l(lz)/h | ®

and & is the c.d.f. of a standard normal. This coverage is uniform over the set

0 = 0(a) = {(a, ) € R?||a| > a"a~t and 8 € (0, B*at)}

where o* > 0 and 8* > 0 are constants set by the experimenter.

Furthermore, the predictors, z;, may be chosen adaptively. That is, z; may be a function
of (z;-1,%i-1,---,&1,%1). In particular, z; may be a function of é&;-; and B;—1 and depend
implicitly on the parameters o and J.
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The problem considered here is a generalization of setting fixed-width confidence intervals
for 1/8 from the model y; = z;8 + ¢;, see Coleman (1994).
Assume the following assumption on the errors.

(E) The errors, €;, are i.i.d. with Ee; = 0, IEe? = 02 and for some p > 1, E|e;|?? < o0.

The least squares estimators for 3, @ and o2 are

n

n 1 _1
Brn = o Z(T’t — T )i, Gn =Ty, — Enﬂn and 0' = r— Z(yz - yn) - snﬂ + sn*,

=1 i=1

where

1
;Z i gn = Zyn Z.’E ’ and s, = Z(zt -fn)z-

z=1 =1

The estimator for o2 is modified by adding s, i to prevent early stopping.
To motivate the stopping time assume that

31: (ﬁ[(dn l/ﬂ—(-ﬂ):?«l +ﬂ'fn)]) =¥ ((8) ’ ((1) (1)» '

Then by a Taylor’s series expansion

[s_n_(ég_z)
b B
R L Vfon v/ z a4+ 0T —li 2 ﬁk—
~ GGt iF) - (0 + 6] - 5 (Bt §) G2 = 6)

> N(O,%(z*—:ﬁ) 5 ( ,.+‘;)2)

= N (0,%q) )

where z* = z*(e, ) and z. = z.(a, B) are such that

On

nts, —p T — z? and T, —p Ty

and

g= (2" - 22) B2+ (2.8 + @)’ = 2"B" + 2afc. + o, (4)

Hence

IP(a—"—- <h)z1—2®(M).
B o4

This coverage should be at least 7, the desired coverage probability. Replace a, 8, o and q

with their estimators to obtain
ﬂ2 /—'
1-29 > Yes
( an\/ Qn ©

n




where
R S - o - \2 1y oA .
o= (2) B+ (3abat &) = 282+ 280,70 + 6 (5)

Then

h‘z 1- c A
Mz_qu( 7) and B2/5m > %6,\/Gn

i.1:4
yn 2 A8p Tnqn .

Based on these calculations it’s natural to consider the stopping times

n 1

Tr=r1(a)= inf{n|n > 3,8, > s’and Z(zi - Zn)Yi > as,%\/frz ((jn + s,?*) 4} (6)
=1

where s° > 0 is a constant set by the experimenter. The term s, i is added to §, to prevent

early stopping, see Lemma 8. Theorem 1 below shows that this choice of 7 produces fixed-

width, asymptotic confidence intervals of the form described in (2).

Let |z] be the largest integer less than or equal to z. Let M > 0 and m > 0 denote
constants that do not depend on a or 3. Let f(a) = O (g(a)) denote the existence of M > 0
such that

b}

9(a)
Assume the following assumptions on the predictors:

< M.

lim sup
a—o0

(P1) z; = z;((2i=1,Yi=1), ---, (1, Y1), Vi) Where v; are independent random variables such that
{v;} is independent of {¢;},

(P2) 3k > p such that supg Y ooy E|zi|* = O(a),

(P3) supe IEsups<n<a |f"n Y&l = 0(e?),

(P4) for ¢ > 0 and ¢ > 1, supg *#IP (supn>a 1z, Y, el > e) =0 (a'(¢'%)2p) ,

(P5) 3z, >0 such that supg P (sup,5, ns;! 2 2,) = O(a'g')

(P6) z* = z*(a, ) and z. = z.(, ﬂ)aresuchthatm - 22 > m, and max{z*,|z.|} < M,
where M, > 0 and m, > 0 are constants,

(P7) for € > 0, limg—co SUpg €2PIP (SUP 54 [Tn — Z.| > €) = 0,

(P8) for € > 0, lim,—,c0 supe €2PIP (sup,5, 7712, — 2*| > €) = 0.

If the predictors are deterministic the assumptions simplify to

(P2) 3k > p such that limsup,_., » 12,_1 |2i]|?* < oo,
(P5) 3z, > 0 such that lim sup,,_,, 78, 1< 2,

(P6) z* — 22 > m, for mz > 0,

(P7) limy—oo Tp = Zu,

(P8) limpooo n™1tn = 2*.




If the predictors z; are independent, identitically distributed such that {z;} is independent of
{e:}, Ez? > 0 and IE|z;]|? < oo for some k > p assumptions are satisfied. This is a special
case of an adaptive procedure proposed in Section 4.

For the remainder of this paper assume (P1) through (P8) and (E).
Define the sigma-field

Xn = U{en,..., €1, Tng1y -0l } (7)
The main result is stated in the next theorem. Recall, both © and 7 depend on a.

Theorem 1 For v € (0,1),

& a
lim sup|P [ |=——-=|<h]| ~-v|=0.
a— 0o @p (ﬂ7 ﬂ - ) 7‘
For p’ < 4kp/(4k + 5p),
' A 4
lim sup |—| E 2| =o.
= o | B, 3

The proof of Theorem 1 requires some properties of the stopping time. At stopping

3 1 -1\ %
Z(w, - T;)y Z(w, —Tn)e; + 8,0 > as7 67 (q7 + sr ) : (8)
-1
Assuming no excess over the boundary, set 37_;(z; — Tn)e; = 0 = s, *, solving for s, yields

s ~ (a/B)'674.

Hence uniformity for 3 down to zero is obtained by sampling until s, is sufficiently large. Let

. _ Blsr
51 = diolg’
Let d > 0 such that
d < k*/(k+2) for k < 2 and d < min(k/2,p) for k > 2. (9)

Theorem 2 Fore, > 0,
lim sup sup €*PP (sX > 1+¢) = 0.
4= @ e>co
For ¢ € (0,1),
lim supP(s; <1-¢)=0.
Q=00 (&)
Furthermore, ;
alLrgosng |sy = 1| =0.

The rate €@ in the first assertion of Theorem 2, leads directly to the expectation in the
third assertion. Theorem 1 is proved in Section 3 and Theorem 2 is proved in Section 2. In
Section 4 an adaptive procedure is proposed .




2 Results for the Stopping Time 7

Lemmas 1, 2 and 3 are inequalities which are used throughout this paper. Lemma 1, adapted
from Brunk and Chung, uses Burkholder’s inequality to make sharp bounds for martingale
differences, see Corollary 2, pg. 397 and Theorem 3, pg. 345 of Chow and Teicher (1988).

Lemma 1 Let d; = d;(e,3) be martingale differences, S, = 3.7 di,k > 1, ¢ > % and

a
supZ]E|d,'|k = O(a). (10)
© =1
Then R
supE sup [S,/¥=0 (a2)
o 1<n<a
and for € > 0,

sup P (sup n'¢|5n| > c) =0 (a‘(‘f"%)k) .
© n>a

For a proof see Lemma 3, Coleman (1994).
Lemma 2 provides bounds for the quantity,

Z(xi - En)yi - s,08= Sn(Bn - ﬁ) = Z(xi - En)ei-
i=1

1=1
Lemma 2

2p

= 0(aP).

n

Z(zi - En)ei
=1

suplE sup
(S} 3<n<a

For¢>%and€>0,

n

Y (i = Tn)es

n>a =1

sup PP (sup n=¢ > c) =0 (a-(¢—%)2p) )
[C]

Proof. The sums, S, z;e;, with the filtration A,, is a martingale then by (P2),
a a .
sup ZIE|a:ie,-|2p = IE|e;|*P sup Z]E|a:;|2” = O(a).
© =1 © =1

The lemma follows by Lemma 1, (P3) and (P4). O
The following lemma states some easy albeit essential properties of g.

Lemma 3

igfq/a2 > Tﬁ,/M,, iréfq/ﬁ2 > m, and igfq > a'%af(m,/Mz).




Proof. By (P6)

irel)fq/a2 = igf:::*(ﬂ/o:)2 +2z.(8/a)+ 12 igf(a:"‘ - z3)/z* > my /M,

-1
2

irel)fq/ﬂ2 > irel)f(a:"‘ — Z.) > my and iIGl)fq > ixéfa2(q/a2) > a” 70 (my /My).

0
Consider the first assertion of Theorem 2. For d defined in (9) choose § > 0 such that

6 < min{1,2k/(k+2)}, d < k6/2, and d < pé.
For € > 0, define the stopping time n* = n*(a, 6, a, 3,¢€) by
n* = inf {n > 3|3, > (a/B)o%q(1+ 6)6}. (11)
Define the set
Ao ={a<n” <0, (0/B)'0’q (14 ¢ < s < (a/B)'e*q (14 0)},
where
n° = |22,(a/B)'0%q(1+ €)' (12)
and z, is defined in (P5). Hence on the set A,,
{s: 2 (a/B)'o%(1+0)} C {i‘(zi —Foeder + 508 < ashoE (Gur + s;.*)i“} (13)
i=1

Lemma 4 states the IP(A°) tends to zero, Lemmas 5 and 6 show that ,+ and §,, converge to
o and ¢. Lemma 7 proves the first assertion of Theorem 2.

Lemma 4 Fore > 0,
lim sup ‘PP (A°S) = 0.

a—0o0 [¢)

Proof. Since s, < t, by Holder’s inequality, Jensen’s inequality and (P2)

A

k (& 2 k
sup IEs sup IE z;
G)P le)] = G)P \;

k

IA

( k=1 K3 t
supE | [a] (Z |a:,-|2k)
© \ i=1

Lo
= |aff"sup ) Bl
®

i=1

= 0 (ak) . (14)




Since s, is nondecreasing in n,

{a2 7"} C {s10) 2 80} C {510 > (a/8)'0%q(1 4 )}
then by (14) the first probability is

k
suplP(a > n*) < sup —ﬂ4—- Esf | = (1+¢)7%0 (a'gk)
o = = To \ato2q(l+e€) la) .

Since n* is a stopping time,

{n">n°} C {(a/B)'o’q(14 )’ > sp0 } C {% > By )5} {

atolq

n®
> 2
Sno

> zo) = 51G1)p0 ((n")"zp) =(1+ e)'%O (a_%k) .

then by (P5) the second probability is

4]

suplP(n* > n°) < suplP (n
© ©

Sno
Since spo—1 < (a/B)%0%q(1 + €)° then for n* < n°
sne = (a/B)*0%q(14€) < spr = Snem1 = (¢/B) 0% (14 €) = (14 €)’]

(2nr = Tne1)? = (a/B)'0%q(1 = b)e

< 4 sup z2 - (a'/B%)dme
1<n<n°

where m > 0 is such that infpee 0%(q/B?)(1 — 6) > 4m. Then by (P2),

al
* 0 2k
s%p]P (s ﬂ4a 2g(14¢€),n gn) < (a“me) Z]Elznl
= k=80 (a 2(1: 1))_

Since 6 < 2k/(k 4+ 2) then k — § > k6/2 > d. The result follows by comparing these rates. O

A

Lemma 5 Fore¢, > 0,

ulo.

lim sup sup €?IP ( 6 >(1+6€)20 .Aa) =0.
a=0 @ e>eo »
For e € (0,1),

e 22 —aa?) =
llll_.nbsgpIP(%g{lan<(1 e)a>—0.

A similar statement is proved in Lemma 5, Coleman (1994).

Lemma 6 Fore¢, > 0,

-1
lim sup sup €*IP ((jn- +s,4 > (14 6)‘2‘ q,_Aa) = 0.

=0 @ ¢

For e € (0,1),

lim supIP (%1;1; gn<(1- e)q) =0.

Q=00 [2)




Proof. Some algebra yields,
5o — Snea 2 s_'"-_ a _ 2 hl__ *
in =0 = R(h= 87 42650 )+ 0 (2 - o)
+ [202, + 262 + 22] + [28a(Z, - 2.)].

-1 -1
On the set Aj;, 22,(s,+/n*) 2 1, s, < [(a/ﬂ)402q(1+ 6)6] ‘=0 (a'%)and n* > a, by
Lemma 3 there exist M > 0 such that

Ll -}
p |gne = gl + s,

22, 26 s, |4 2t . 2le
< sup[ 2 g, - g + A . S g A
n>a a2qn4 atgns a q
2 - = 1 _ 206|al _ 1 -1
+ J_ﬂnslznen’+T|n%en + Al |(zn—z*)+—sn.‘]
aigq azqg q q :
2
< Alsupl: 7 ﬂl n—ﬂ|+ . +n%|€n|
n>a | ni

nd[5,2] + (b |€n|) + %0 — 2a| 4 O(a)-%] .
Let m = m(¢,,6) > 0 be such that (1 + c)% -1> 8mes for all € > €,. Hence

-1
P+ 5t 2 (14 0 g ) <P (5 (10w -4 67F) 2 8met, 4,

can be bounded by the sum of eight probabilities. The first probability is

lim sup sup FP (sup 7 %18, — B* > ua %) =0. (15)

a=00 o €>¢o n>a ng

The bound follows from Lemma 2. Lemma 2 applies to the second probability, (P8) applies
to the third, Lemma 1 applies to the fourth and sixth, (P4) applies to the fifth, (P7) applies
the seventh and the eighth is zero for a sufficiently large. The second assertion is proved in a
similar manner. O

Lemma 7 Fore, >0

lim sup sup P (sf > 14¢) = 0.

a—00 © €>¢o

Proof. Fix ¢, > 0. Define the event

: 1 1 } € % 11
B, = ; <Qn‘+sn') <(1+_5> o2qi,Aq ¢ .

By Lemmas 4, 5 and 6,
lim sup sup ¢*IP (BS) = 0.

@00 @ >0




Choose M = M(e,,6) > 0 such that for all € > ¢,

€

(1+6)f [(1+§)£ 1+ o) ] > _Méb.

On the set Bg, (a/B)10%q(1+ €)® < 8,0 < (a/B)*0%q(1 + ¢) and
1
4

$od (o, t (ot (146 4
aS5e0 (e + 850" | — 8pef < 80 |ac2gh 1+§ -8Bl <0

This quantity is maximized by replacing s,» with it’s lower bound. Hence
1 s
a1 -1 4
as).or. (Qn. + sn.‘) fo SpefB < %UQq(l + 6)34é [(1 + %) o 1+ e)%]

< —a2m(n°)%Me§

where m > 0 is such that m < infe 0,/g/(8+/22,) and n° was defined in (12). By (13) and
the first assertion of Lemma 2.1,

4

a
sg)p]P (s, > ﬂ—40

1
§. l l 4
< sup]P ( (z; — Tps)ei + Sns B < as}.bl. (qn + s, ) ,Ba)

21+ ), Ba)

n
(-’Ei -T,)e

> anMeg)
'=1

< supIP( sup (n°
1<n<n®

= "0 (a

O
Consider the second assertion of Theorem 2. For € € (0,1), define

n. = sup {nlsn < (a/8)'0%a(1 - )}
Then
{3:51—6}={s°§sT§sLaJ}U{sLaJ <s¢$sn_}. (16)

Lemma 8
supIP (s° < sr < 8141) = O0(a™P).
1P (s° < 57 < 5pag) = O(a™)
Proof. Let B = (2B*)‘§ and define the set
D, = {SLGJ < aZB} .
Then by (14),

supP (D) < sup (2B) " Est, = 0 (a¥). (17)




On the set D, N {s, > s°} with0 < B < ﬂ*a}, and a sufficiently large,

: 3 (3,14 N ord
sup s,08 —asy < sup 8y |Spatf* —-al < ()8 [=~a] = ~(s°)s8
3<n<e $°<sn<a?B 2

N8

Since

n 5
[+ —
sg)p]P (33 <s, < sLaJ,'Da) < sgp]P (3?1112:; Z_}(xi —ZTn)ei + 8,8 —ass > 0,8, > .9°,'Da)
< supP| su T;—Tp)e; > (8° §2
up <3<n§a§( n)ei > (s°) 2)
= 0(a7?)

O

Two preliminaries are needed before analyzing the second set in (16). The first is to approx-
imate the sum, 67! Y7, (z; — T )e;, with a Brownian motion. This requires the martingale,
o~ (z; — z.)é;, the sum

n n
Tn=0"2 Z]E ((xi - x.)2e?|X,-_1) = Z(x,- - 2.)2 = sp + (T — z.)? (18)
=1

=1

and the following strong approximation result for martingales, adapted from Theorem 4.4,
Strassen (1965).

Theorem 3 Let © C IRK for k a positive integer, § € © and ©, C © such that O, C O, for
all a’ < a. Assume e; satisfy (E), d; = d;(0) are such that d; is independent of {e;,j > i} and

supZ]E|d,~|2k = O(a).

© i1
Then, without loss of generality, there exist Brownian motions W(t) = We(t) such that for
7> 5, 5<Y <7, 7 <(6k+p—2)/4p and € > 0,

! i die;— W (i df)

i=1 i=1

sup €PIP (sup n~"
(S}

n>a

> ) = 0 (a='-1).

Proof. See Theorem 3, Coleman (1994). O

Here as in Strassen, the phrase, without loss of generality, means that there exist a proba-
bility space with a Brownian motion and random variables equal in distribution to the original
random variables such that the relation is satisfied.

Lemma 9

2p

= 0(a®).

n
Z(x,- — T.)e;
i=1

supIE sup
© 3<n<a

10




For ¢ > % and € > 0,

n

D (zi -z e

n>a =1

sup €PIP (sup n~®
e

> 6) =0 (a_(¢"2l)2p) .

There ezist Brownian motions W(r) = Wy(r) such that for € > 0,

>e) =O(a‘§).

Proof. The sums 3_7,(z; — z.)e; with the filtration X, is a martingale and

n

Z(:E,' - En)e; - W(ry)

=1

-2
sup P (sup 8n
©

n>a

a L2
sgp > E|(zi- z,)e|* < 2%E|e;|® sgp > (]E|z,'|2p + sz”) = 0(a).
i=1 =1

The first and second assertions follow from Lemma 1. Since

n

-3
sup sn * Z(L ~Tp)ei — W(ry,)
n> =1
s _2 : n N n
< sup (nTsn ‘) (IEn - T n"1 |Ze¢| +n"4 Z(:m —z.)e ~ W(rp) ) )
n>a i=1 i=1

the third assertion follows by (P5), (P7), Lemma 1 and Theorem 3. O
The second preliminary result is the following lemma.

Lemma 10 Let W(r) be a standard Brownian motion, ¢ = ¢(a,a, ) > 0, such that infg ac —
oC as a — 00,

p_aef 1 . 0 3
@= (1 \/ES_O) and Tw = mf{r|r >s’andW(r)+ru > acr4}.

Then for ac > e* and 0 < u < d,

7

v (TWS (= /1) ) € 11 (1= 8 (aze)) + dacs (Ve - 1

where ® and ¢ are the distribution and density functions of a N(0,1) random variable.

After rescaling for ¢ this lemma is the second result in Proposition 2.3 of Keener and
Woodroofe(1992).

Lemma 11 Fore € (0,1),

P (s0) < 87 < 8n, =0(a"%).
sup (LJ ) (a”2)

11




Proof. Fix € € (0,1). Define the set

£, =<{inf 2> €\
a = é‘;a;—(l-z)

-1
r € 12 n €
E° = <su —">(1-——) C{s — } { T, — )2 }
‘ {n>§ Sn 4 G U iﬂﬁ(z" z)"> 48z,

By (P5) and (P7),

then

lim sup P (&) = 0. (19)
a—00 ®

Define the set

3 1 11 € } 3 1 1
F. = <inf [as,‘la' &ﬁq,{—An]— (1—5) arno~2q4| >0,&, 3.

n>a

where

o~! i:(:ci ~Tn)e; — W(ryp)

i=1

For a sufficiently large and all (a,§) in O,

1 €\4 4] 1
a €< (1—:1-) —(1—§> oigs.

-2
Then, multiplying by a~lr, * o,

3 1
¢ 1 1 3
Fe o= {inf (f—) Todgh (1 - 5)‘ odgt —amloriiA, < o,sa}Usg

A, =

N N
—f— —
— S -
=] vs
—~ [<Yaar!

Q —
3 TN
) —
S| l
A s
o~ ~—
—t —
N
' o)
I 3
N— '§‘
ol |
Q
o TN
¥ —
-p |
——
Nl
N
N ~p
2] Q
o R
o o
» e
31
™ |
b 8lm
3 [
A\ +
Qlm |
—_— —
™
- |
a2 2
. 3
s
>
3
| S |
A
o
N——
™
®a

By Lemmas 5, 6 and 9 and (19)
lim supIP (F7) = 0. (20)

a—00 [¢)

On the set F, N{n* > a} and for a sufficiently large, define R as

IA

Tn

L]

sn. (1- i)_{i < (e/8)'"a(1-9) (1~ -})'*

(a/B)'o% (1 _ %) < (a\/‘?q}(ﬂl— £+ _ \/g)4= .

12

IA




Then

{SI_GJ <s; < Sn.,]:a}

n _ 3 1
- Z(a:,-—:l:n).ei+snﬂZa,‘1 ,%(qn+sn ) , forsome n € (a, n.], F,
i=1
B_ a2 11
- {W(rn)-f-rn; > o 8107 ¢n — Ay forsomen € (a,n.], .7-'}

N

: i
{W(rn) + rng >arpo” 2q4 (1 - 5) forsomen € (a,n,.],fa}

1
c {W(r) + rg > ario%qd (1 - %) * forsomer € [s°,R]}
¢ {w <R} (21)

where 7y is the stopping time in Lemma 10 with

Hence by Lemma 10,

lim sup IP (“LaJ < s, < sn_,]-'a) < hm sup P(rw < R)=0 (22)
a—000<ﬁ<ﬁ- a—» 0<ﬁ<ﬁ.
The result follows by (19) and (22). O

Proof of Theorem 2. Lemmas 7, 8 and 11 imply the first two assertions of Theorem 2. For
the final assertion of Theorem 2, let d’ < d. Then for € € (0, 1),

supBs; — 1 = sup [ (Js7 — 1567 < 1= ¢) + B (o7 113157 ~ 1] < ¢

+E (s -1 514e<s; <2) +E (|57 - 11557 2 2)]

s S“"[“’(s:<1—e>+ed’+IP(s:z1+e)+ZlP((s:—1)“”zn)]
© n=1
< c+ed'+e+o(1)2n_%
n=1
< 4e

for a sufficiently large. Since € was arbitrary the result follows.

3 Proof of the Main Result, Theorem 1

In this section let n® = |4z,(a/f)%0%q|. It was previously defined in (12). For € € (0,1), define
the set

Go=Gale)={|s; —1|<eanda< 7<n%}.

13




Lemma 12
. oy
Jim supIP (Gz)=0
Proof. Consider

G ={|s; - 1] 26}U{3§T$¢1}U{T>n°,s:< 1+¢}.

By Theorem 2, the probability of the first set tends to zero, uniformly over ©. By Lemma 8,
the probability of the second set is

suplP(3<7<a)=suplP (s" <s; < Slaj) = 0(a’?). (23)
) B

Since
{n° < 7,85 < 14 €} C{sno < 87,87 <14 €} C {8n0 < (a/B)a%q(1+ €)} C {mos;} > 2o}

By (P5), the probability of the third set is

o

supP(r° < 7,87 <14+¢€ < suplP (n > 20) =sup O ((n")‘zz") =0 (a-%k) )
© © ©

Spo
a
Let
a‘o?q a‘o’q
/o = |=————<] and N. =
Yo = i —ap) =4 e = i

By Lemma 3, infg N, — 00 as a — .
Lemma 13 For é € (0,1),

alirrolosgpP (‘N—a - 1‘ > 6> =0,

Lz (@i —z)e 1—1 (zi — @u)e
= - 6§61 =0
all{gosgplp (\ 0'\/1—' 0’\/_.N_a- >
and 5 N
i Li=1& _ 2= & 5l =o.
algrgo sg)p]P ( o7 o /N > )

Proof. Given é € (0,1), choose € € (0,1) such that on the set G,,

l—1{<6.
s¥

14




On the set G,,

!
(z* - z?) [ 1‘ - 26]
- l.‘s_f_(z*_ 2)| - 26(2* -
- SF T (2 z.)
1 Sr * 2 T * 2 - 2
< 's—.—l""—6($ :l:.)-{-——(.’l) —IE.)—6(.’E —:l).)
< (1+8)|F - (" - 2?)| - 8" - 22)
< (14 6)sup s—”-—(z'—:cf) - émy
n>a| N
then by (P7) and (P8)
N! om
. N, < Sno_ w2 Mz ) _ o,
all’n‘r)losgpIP(‘ - 1)>26,ga) < 11m supIP (21;1; - (z* —z)| > 1+6) 0

The first assertion follows easily. Anscombe’s Theorem, Anscombe (1952), applies to the second
and third assertions, see Section 1.3 of Woodroofe (1982). The first condition of Anscombe’s
Theorem is the first assertion of this theorem, the second is uniform continuity in probability,
(U.C.L.P.). For the second assertion this is, for all § > 0 there exists A > 0 such that

TGN TR w i CTREN
Sypﬁﬁﬁm oV, Tk |0) <"

Now,

‘Zﬁ“z—Ma_aﬂm—ak

ov/N, + k oV N,

< Shet (@i = za)er T (zi - zae
- o/ Ny + k oVN, +k

Natk
i=aNa+1(zt

ov/N,

Set A = 64. By Lemma 9,

2_1(1:,- — Z.)e; 21—1("‘%’ - Z.)e

V];a+E U\/Na
1_1(1:, - :c.)e,

oV N,

nx

IA

‘\/N +k

P = Nik (z; — z4)e; >§- < su ( 2 )2p (64N )p = 6270(1)
Slép 15?5%)4{Na ov/N, =N R R B @p 06+/N, ' ¢ '

Since

1- (14695 <

tolv—l

VN 1‘
ot

1<k<64Na

15




then by Lemma 9 the second probability is

VN, i (e — el ¢ Tz~ ae| 1
sup IP A S 1 Al ML PAC I P P ANad M. VA ) Nl
& <1 <k<siN, |V/N, + R VN, |2) S F /N, | &

6'%%0(1).
This proves the second assertion of the lemma. The proof of the third assertion is similar.

Lemma 14 For 6 > 0,

a‘o?q
lim supIP — -1|>é6] =0,
aztoo g ( B2 i (2 — T )y )
lim supIP ( -Cilﬂi - Llﬂx'(:z:‘—xf)'% > 6) =0
a=00 o q? Sy q?
and
=% g gz V' 7 gz V
Proof. Given é > 0, choose € < §/2in the set G,. Since z,_l( )Y = 2iey(Ti—Tr)e+ 08y,
ﬂ321 1(1:1 -z )y
sgp]P ( pryc -1[>6

IN

ﬂS
sup [IP <a402q

< suplP | sup
© 1<n<n®

> f,ga) +P (15 - 11> 3.0.) +1P(gs>]

azo\/'é 6
N ‘/—) T2

r
Z(:l:i -Z,)e
=1

n

> (zi — Tn)e

=1

= §

for a sufficiently large. The last two assertions follow easily from the following bounds. By
Theorem 2 and Lemma 13,

—(z" -z )-—1‘>6> = lim sup]P(‘—i—l‘>6)=0.

all.n;.lo SléP]P( a0 g N/ g*

Sr

and by (P7) and (23),

lim suplP (|7, — z.| > 6) = lim sup []P (sup T — z.| > 6) +IP(r < a)] =0.
a—=0 g n>a

a—o0 ©
]
Lemma 15 There ezist Brownian motions, W(z) = Wy(z), such that for 6> 0,

& a\ W(N,) _
(E“ﬂ) VT ”)‘0'

lim supIP ( a?

a— 00 @

Note that W(N,)/v/Nq ~ N(0,1).
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Proof. Note that,

(___> _ (ﬁﬂi__- _a
ﬂ‘l‘ ﬂ BT T ﬂ

- g—j[a— (%4—5) ([L—ﬂ)]

- E,-l(is: T, )y; [ Ee' (_ ) sr E(m' - mf)e']

i=1
atolq ,6233-
B L iea(2i = T2 )yi 2043

¢t oT g
- b [d EI:I € —c EZ:I (.’l?i — x"‘)ei]
T |Ur 0\/1—_ T O'\/‘F )

ovT

[ﬁ (s_,)% Tiye ot fE, (z) Ty :me,-]

where
b = alo’q ()}, o = QBT [T
il s S it e eV
and _ _
e 2 [ e silesm) [T
g2 T q2 Sr
Hence "
( -5) -
[d ;r_ €; —c Ez l(xl 22.)61'] _ [d ZZ:I €; —-¢ E;:l(xi —27,.)6,']
br |dr \/— T 0_\/7—_ o 0_\/7—_ 2 0_\/7:
+ [do i=1 € _ Lizi(zi — e z] — |4 Efv;l & _ . Efi“l(z;— Ts )€
Co o1 °ovN, ° o+/N,
+ 1_1 € TN (2 = z.)e; _ W(an,)
do Co oV N, VN,
+ W( zNa) W(N)
VN, VN,
where
ZN, = cgsNa + 2¢,d,No(ZN, — :1:.,)2 + d2N,,
Co =.&lﬂﬁ(x‘ - z..)'% and d, = ﬁx(z"‘ - mf)%.
g2 q:

By (P6) and Lemma 2,

_1
leo] < mz? and d, < 1.

17
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It’s sufficient to show the four terms in (25) converge in probability to zero uniformly in .
Consider the first term in (25). By Theorem 3,

No (r— o Yo Na ..
zi=1(1’1 2?..)61 and Ez:[ €
oV N, oV N,

are stochastically bounded, uniformly over ©. Hence by Lemma 13,

Tz (i — zA)e Yoieq €
a\/:r- and aﬁ

are stochastically bounded, uniformly over ©. By Lemma 14 and Theorem 2, b, —, 1, ¢r —p ¢,
and d; —, d,, uniformly over ©. Hence the first probability tends to zero uniformly over ©.
By Lemma 13 and (26) the second term in (25) converges to zero, uniformly over ©.
Consider the third term in (25). The sums 3" ,(d, — ¢o(2; — z.))o " e; with the filtration
X, is a martingale. By (P2), (P5) and (26)

S‘gpfiwdo —cfzi—z)® = O(a).

=1

By Theorem 3, with y = 1 and 7' = 3

Thee | YNe(zi—z)e|  Win,)
S‘éP’P(Hd" N A ] VR, ”)

o~! En: [do = co(z; — z4)] € = W (2)

i=1

IA

)

= 0(a7¥). (27)

sup IP (sup n~%
(] n>a

Anscombe’s Theorem applies to the fourth probability in (25). Two assumptions must be
verified. By (P7), (P8) and (26)

lim sup P (‘z&v“ - 1‘ > 64)

a—+Q ¢} a

64
< (}Lrgosgp []P (cf, le: - (z" - 2?)| > 3)
4 ' 4
+P (dz - cg(a:" - 1:3) - 1| > —?T) +P 2|Co|do |EN¢1 - 2:,..| > ?
= 0.

Here (P7) and (P8) apply to the first probability, the second probability is zero and (P8)
applies to the third probability. The second assumption is U.C.L.P., by Levy’s Inequality

sup IP (  sup Wiz) _ W(Na) > 6)
© |z=Na|<64Ng | V N \% Na
< 4suplP (|W((1 — §)Na) = W((1+ 69)N,)| > VNeb)
©

= 86

18




O
Lemma 13 implies the first assertion of Theorem 1.
The proof of the second assertion of Theorem 1 requires the following lemma.

Lemma 16

!

=0 (a’?), supE[F, — z.]* = O(1), and supE I'ETI”I =0 (a'%”')
e )

2p
— -1

T

suplE
o)

Proof. Claim for k' < k,

K 34
supE ((L) ! ‘T > a) <suplE (sup (i,) * $8p > s") =0(). (28)
© Sr © n>a ‘Sn

By (P5) and for z > 2z, and m > 1

- —km
sup]P( sup nsn122,sn25°) =O(a 2 )

© em<n<am+l

—k _k -k
If z > a™*+1(s°)~! then the probability is zero. If z < a™+1(s°)~! then (s°) f-% > g i0miD),
Hence

- -k ~k(ym-
sup]P( sup  nsy’ >z,sn25°) =z 4O(a i(m 1)).

[0 em<n<am+l

Summing m over the positive integers yields

k 1
sup IP (su nsyl > 2,8, > s") =210 (—————)
@p n>E log(a)

and (28) follows. Since p’ < 4kp/(5p + 4k) then

5p)p  _ 5p  5(p)?

4p-p) 4 4p-p)

Choose p" such that p’ < p” < p and

k>

5 pl pll

k> 4(p" - p')

At stopping, L

T - R 1\ 1 %
Z(:c,' - Tn)¥i 2 ast /0, (qT + 8r ‘) > ast.
=1

Therefore

Bsr = 3 =1 (Ti = Tn)yi

T C_ R <
Yi=1(Ti = T )y

5
ast

Yi=1(Ti = -’fr)ei‘

ol
|

19




By Hélder’s inequality,

2p'
sup IE E -1
© .
. _ 2p’ 2p’
S sup E Ei:l(zl ; 2?.,—)6, 3<r<a + ]E Zt"l(zi 2?7-)6, ‘T>a
© ast asf
gy 5. n 2#
< supa™*? <(°) {PE| su T;—Tn)e; 3<r<
@p ( ) SSnga g( n) ! ' ¢
n 2p' r %ﬂ
8 —_ — .
v e ] ()"
, - n 2p '
< supa~ {(s°)7% |E sup Z(z,- —Tn)e; P3<r<a)?
@ 3_<_TLSG. i=1
1" -2,;- .1 i-,-’i
e P T\ T P
+ |Esup |n BZ(z,--zn)e E|— iT>a
n>a =1 T
, ! p=p’
< @ [0@)F 0@ +o)00)

- 0 (a‘ min{p,Zp’}) )

The first and second expectations are bounded in Lemma 2, the probability is calculated in
(23), the third expectation is finite by (28).
Consider the second expectation. By (P2) and (P6),

2k
supE ( sup |Zn — z,,l) < 2% (suplEE 2|2 + Mzk) = O(a).
®

3<n<a n=1
By (23) and (P7),

supE|Z, — z.|? < sup lIE ( sup [Tn — 24?53 <7< a) +1Esup |Zn — 2 |2pl
o © 3<n<a
g -
< sup []E ( sup T, - z...|2k)] PB<r< a)]_"L + 0(1)
© 3<n<a

k=

= [0(@)]¥ [0 +0(1)
= 0(1).

In a similar manner

s

!

z
, 2p 2p~p
supEle, [P < sup [IE(sup |En|2”)] PB<T<a)] % +
© (S] 3< .

<n<a

[IE sup |En|p]
n>a
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= o) [0 ") F" + 0(a~ ) = 0(a~H7).

The probability is bounded in (23) and the expectations are bounded by the Marcinkiewicz-
Zygmund inequality, see Theorems 3 and 4 pages 369-370 of Chow and Teicher(1988). D
For the second assertion of Theorem 1, consider

’

ﬂ(&_ﬁ)p
5, B
_ E(a+ﬂff+ef_ _2)”'
e B, T8
_|8.88. . 8% 8. _[
AT A
- - ¥
- (1+§x.)(%—1)+ (‘,—x.)(§—1)+%(.ﬁ—1)+%’
8

A
S
£
L —
TN
—
+
|
8
*
N—
N
Pl=
t
—
=
e =1
+
RIS
~~
8|
N
|
8
*
g
N
3
|
—
~_—
=
N
3
TN
SIS
|
—
~——
.cw
oM
—_

< #sw ‘1+§x.p, El.[éi_lzplrr_g”' e -] g:_lzp'r }
et ] e

= 0 (&) 0 (a=mntr)] (a%) 0(1)[o (amntra)
+0 (ﬁ') ) [0 (a=minte 2,,'})]1 +0 ( )0 ()

]

4 An Applicable Procedure

In this section, a class of procedures is shown to satisfy assumptions (P1) through (P8). Set
constants M, m such that 0 < m < M < oo. Let

z; = i + uiv;
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where for ¢ = 1, 2 and 3 the experimenter chooses constants /; and wu; such that |l;] < M and
m < u; < M, for i > 4, I; = (&), Bi—1) such that for (a,b) € R, |/(a,b)] < M and for all
€ > 0 there exist 6 > 0 such that

sup [I(a,b) = I(a’,b")| < ¢, (29)
Jama’|<8,[b-t/|<8

u; = w(8%_;) such that for s > 0, m < u(s) < M and for all € > 0 there exist 6 > 0 such that

sup [u(s) - u(s)| <€
[s—s'[<6

and for ¢ > 1, v; are i.i.d. r.v.s such that {v;} is independent of {e;}, Evy = 0, Ev = 1 and
for some k > p, E|v|F < oo.
Assumptions (P1) and (P2) are easily verified. Consider (P3), since

Zn el < M|Y el + M[T,)| Y el

=1 =1 =1
then by independence assumption (P3) is

n

supIE sup |znZe,|2p < ME sup |Z |2”+MIE sup |vn|2”IE sup |Z e;|*? = O(aP).

3<n<a i=1 3<n<a i=1 3<n<a i=1

The first and third expectations are O(a?) by the first assertion of Lemma 1. The second
expectation is O(1) by Marcinkiewicz-Zygmund inequality, see Theorem 3, pg. 369, Chow and
Teicher (1988). For (P4), let ¢' be such that < ¢’ < min{@, 3}. Then by Markov’s inequality
and independence

n

€ \% —h—
sup <W> P <:1;1:n ¢|zn26,~| > e)

€>€o =1

e \2r e €
< 5;15 <m) P (sugn |Z€i| > m)
+a-—(1 ¢')2r R (sup|n ¢’ ZU |2p) P Ul iy o (sup |n~ ¢ Ze |2P)

t=1 1=1
- 0((1-(¢ 2p)
The probability is bounded by the second assertion of Lemma 1 and the expectations are O(1)

by Marcinkiewicz-Zygmund inequality, see Theorem 4, pg. 370, Chow and Teicher (1988). For
(P5), define w; = s; = 0 and Wy = (0, ), and for n > 2,

n-—1 -
(In + Un vy = Tp=1)? and W, = o(ey, veey Ene1y U2y euey Un).

Wp = 8p = Sp-1 =

Then w, is measurable W,,, v, is independent of W,_; and [,,u, and T,—, are measurable
Whr—-1. The sums,

z": ~ B (wiWiea)] Xn:[ : [u + (- T 1)2]]

=1 =1
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with the filtration W, is a martingale with
> E|w; - E (w;|Wi-1)|F = O(n).
=1
For n > 2,
1 ni-1 m?
-y E(w;|Wi—1) > =) — [m? = TFio)?| > —.
; (w| 1) 2 n; E [m +(l: T 1)]_4

Fora > 1 and 2, > 4/m?,

1
sup IP (sup n.s;;1 > zo> < sup]P sup——zw, > ——
© n>a n>a i=2 2o
1
< sup]P (sup ~ E (w;|Wi-1)] > —— z_)
o
< .'z

Let
z. = l(a, B) and 2" = u(0?) + z2.

Then max(z.,z*) < u(o?)+ M? + M and z* — 22 > u(0?) and (P6) is satisfied. By (P5) and
the second assertion of Lemma 2.1, which requires (P2) and (P4),
Z(zz - zn)e,

ﬂ‘ > 6)
. 6
lim sup l]P (supn 2—)+]P(sup—>zo)]
R O n>6a =1 n>ba Sn

= 0, (30)

lim supIP | sup
a—=® 9 n>6a

IA

for é > 0. Similarly,

lim sup IP (sup |&n — @] > 6) = 0, (31)
a—0 @ n>ba

for 6 > 0. Fix € > 0 and choose § > 0 such that 26 M < ¢/4 and

€
sup |i(a,b) - l(a,B)| < T
la—a|<6,|b-B|<6
Since |l(a,b) — I(a’,b')| < 2M, by (30) and (31).
lim sup P (sup |ze = 1n| > e) (32)
a—00 @ n>a

< lim sup []P (supn 1z:ll(a B) -—l(a,_l,ﬂ,_ )| > )

a—00
1=1
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+]P (7511;1(:1) n—l Z |l(a’ﬂ)— l(di—laBi—l)l > %)]

1>né

IN

lim sup l]P (sup B, - ﬂ| > 6) +1P (sup |6, — @] > 6)]
=% 9 n>ba n>ba
= 0. (33)

Here l(di_l,ﬁi_l) =l;fori=1,2 and 3. By Lemma 1 and (33),

lim sup IP (sup |Zp — z.| > e)
n>a

a-—0o0 )

€ €
< i Tp—2u| > = Tol > e
< Jim ey [P (s = => ) + P (spil > 77
= 0.

Since |{(a,b)| < M, uniformity for € > 0 is immediate. Verification of (P8) is similar.
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