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Abstract _ 

Consider the regression model Yi = a + pxj+ej and the problem of constructing a confidence 

interval for alp with I a I > a_) and P E (O,P-) where a_ > 0 and P- > O. Uniformity down 

to {j = 0 is a major difficulty. In fact any procedure based on a fixed sample size, will have 

either infinite expected width or zero confidence (Gleser and Hwang 1987), confidence being the 

infimum of the coverage probability. Sequential sampling is used to construct fixed length 

intervals of the form 

where T is an integer valued stopping time, aT and PT are the least squares estimators for a and 

{j based on T-observations and h is the half-width of the interval. Stopping times Tb are derived 

so that these intervals have coverage probabilities converging to a set value "y as h - O. This 

convergence is uniform down to P = O. Furthermore the predictors Xi may be chosen adaptively. 
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A Fixed-Width Interval for 0:/f3 in Regression 

By Daniel A. Coleman 1 

Universidad Carlos III de Madrid 

Consider the regression model Yi = a + j3xi +ei and the problem of constructing a confidence 
interval for aj j3 with lal > a* and j3 E (0, j3*) where a* > 0 and j3* > O. Uniformity down 
to j3 = 0 is a major difficulty. In fact any procedure based on a fixed sample size, will have 
either infinite expected width or zero confidence (Gleser and Hwang 1987), confidence being 
the infimum of the coverage probability. Sequential sampling is used to construct fixed length 
intervals of the form 

(0:,. j /3,. - h, 0:,. j /3,. +h) 

where I is an integer valued stopping time, 0:,. and /3,. are the least squares estimators for a and 
j3 based on I-observations and h is the half-width of the interval. Stopping times Ih are derived 
so that these intervals have coverage probabilities converging to a set value 1 as h --+ O. This 
convergence is uniform down to j3 =O. Furthermore the predictors Xi may be chosen adaptively. 

1 An interval for a/f3 
Fixed-width, asymptotic confidence intervals are set for aj j3, from the model 

(1) 

Intervals are of the form 

(2) 

where I is an integer valued stopping time, 0:,. j /3,. is the ratio of the least squares estimators 
based on I observations and h is the half-length. Stopping times Ta are derived so that these 
confidence intervals have coverage probabilities converging to the desired coverage probability 
1 E (0,1) as h ....... 0 or as a --. 00 where 

a = V- 4l - 1 (1; 1) jh (3) 

and 4l is the c.dJ. of a standard normal. This coverage is uniform over the set 

0= 0(a) = {(a,j3) E IR.2llal > a*a- t andj3 E (O,j3*at)} 

where a* > 0 and j3* > 0 are constants set by the experimenter. 
Furthermore, the predictors, Xi, may be chosen adaptively. That is, Xi may be a function 

of (Xi-llYi-ll ... ,XI,Yl)' In particular, Xi may be a function of O:i-l and /3i-l and depend 
implicitly on the parameters a and j3. 

1 Supported in part by NSF grant DMS-89-02188. 
AMS 1980 Subject Classifications: Primary 6L12j Secondary 60G40, 60F15. 
A'eywords and phrases: Brownian motion, sequential estimation, Strassen. 
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The problem considered here is a generalization of setting fixed-width confidence intervals 
for 1/(3 from the model Yi = xi(3 + fi, see Coleman (1994). 

Assume the following assumption on the errors. 

(E) The errors, ei, are Li.d. with JEei = 0, JEe; = (72 and for some p > 1, JEleil2p < 00. 

The least squares estimators for (3, a and (72 are 

where 
1 n 1 n n n 

xn =- LXi, fin =- LYi, tn =LX~' and Sn =L(Xj -xn ? 
n i=1 n i=1 i=1 i=1 

_1 
The estimator for (72 is modified by adding sn 4 to prevent early stopping. 

To motivate the stopping time assume that 

Then by a Taylor's series expansion 

where x" = x"(a, (3) and x" = x,,(a, (3) are such that 

-1 "2 d-n Sn --+p X - X" an Xn --+p X" 

and 

(4) 

Hence 

D' (I~: -~I ~ h) ~ 1- 2~ (-h:r)· 
This coverage should be at least 'Y, the desired coverage probability. Replace a, (3, (7 and q 
with their estimators to obtain 
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where 

(5) 

Then 
"2 

h(3nV5 > _",-1 (1 - "Ye) "2 ~ 2 ~ 
~ ~ and (3nySn ~ a unVqn Unyqn - 2 

where a is defined in (3). Hence 

Based on these calculations it's natural to consider the stopping times 

(6) 

_1­
where SO > 0 is a constant set by the experimenter. The term Sn 4 is added to qn to prevent 
early stopping, see Lemma 8. Theorem 1 below shows that this choice of T produces fixed­
width, asymptotic confidence intervals of the form described in (2). 

Let lzJ be the largest integer less than or equal to z. Let M > 0 and m > 0 denote 
constants that do not depend on a or (3. Let f(a) = 0 (g(a)) denote the existence of M > 0 
such that 

. If(a) Ihmsup -() 5: M. 
a-oo 9 a 

Assume the following assumptions on the predictors: 

(PI) Xi = Xi((Xi-I, Yi-d, ..., (XI, yd, Vi) where Vi are independent random variables such that 
{v;} is independent of {ej}, 

(P2) 3k ~ p such that sUPe 2::£=IlElxiI2k =O(a),
2p(P3) SUPe lEsuP3<n<a IXn 2::~I eil = 0 (aP),� 

(P4) for £ > 0 and i > ~, SUPe £2pJP (suPn>a n-t/>Ixn 2::~I eil > £) =0 (a-(t/>-tl 2P ) ,� 

(P5) 3zo > 0 such that sUPe JP (suPn>a ns~I ~ zo) =O(a-~),
 
(PG) x .. = x"(o:,(3) and x .. = x .. (a,(3) are such that x .. - x~ > mx and max{x", Ix .. l} < Mx� 

where Mx > 0 and m x > 0 are constants, 
(P7) for £ > 0, lima_ oo SUPe £2pJP (suPn>a IXn - x .. 1 > £) =0, 
(P8) for £ > 0, lima_ oo SUPe £2pJP (suPn>a In-Itn - x.. I> £) =O. 

If the predictors are deterministic the assumptions simplify to 

(P2) 3k ~ p such that limsuPn_oo n- I 2::i=I IXil2k < 00,� 

(P5) 3zo > 0 such that lim sUPn_oo ns;;I < ZO,� 

(PG) x .. - x~ > m x for m x > 0,� 
(P7) limn_ oo xn = x .. ,� 
(P8) limn n-Itn = x...�_ oo 
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If the predictors Xi are independent, identitically distributed such that {Xi} is independent of 
{ed, lEx? > 0 and lEl x11 2k < 00 for some k ~ p assumptions are satisfied. This is a special 
case of an adaptive procedure proposed in Section 4. 

For the remainder of this paper assume (PI) through (P8) and (E). 
Define the sigma-field 

(7) 

The main result is stated in the next theorem. Recall, both e and T depend on a. 

Theorem 1 For'"Y E (0,1), 

For p' < 4kp/(4k +5p), 

. I(3lpl 
a'T Cl! p'bm sup - IE -, - - = O. 

a-oo e Cl! (3'T (3 

The proof of Theorem 1 requires some properties of the stopping time. At stopping 

(8) 

_1­
Assuming no excess over the boundary, set 2:[=1 (Xi - xn)ei = 0 = S'T 4, solving for S'T yields 

Hence uniformity for (3 down to zero is obtained by sampling until Sn is sufficiently large. Let 

Let d > 0 such that 

d < k2 /(k + 2) for k :$ 2 and d < min(k/2,p) for k > 2. (9) 

Theorem 2 For £0 > 0, 

For £ E (0,1),� 
lim supIP(s; :$1- £) = O.� 

a-oo e 

Furthermore, 
Hm sup IE Is; - lid = O. 

a-oo e 

The rate £d in the first assertion of Theorem 2, leads directly to the expectation in the 
third assertion. Theorem 1 is proved in Section 3 and Theorem 2 is proved in Section 2. In 
Section 4 an adaptive procedure is proposed. 
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____ 0 __ 00_0_0 

2 Results for the Stopping Time T 

Lemmas 1,2 and 3 are inequalities which are used throughout this paper. Lemma 1, adapted 
from Brunk and Chung, uses Burkholder's inequality to make sharp bounds for martingale 
differences, see Corollary 2, pg. 397 and Theorem 3, pg. 345 of Chow and Teicher (1988). 

Lemma 1 Let di =di(o:,f3) be martingale differences, Sn = l:i:l di,k > 1, </> > t and 

a 

sup L lEldil k =O(a). (10) 
e i=l 

Then 

and for f > 0, 

For a proof see Lemma 3, Coleman (1994). 
Lemma 2 provides bounds for the quantity, 

n n 

L(Xi - Xn)Yi - snf3 =Sn(/3n - f3) =L(Xi - xn)ei. 
~1 ~1 

Lemma 2 

n 2p 

sup lE sup L(Xi - xn)ei = O(aP). 
e 3$n$a i=l 

For </> > t and f > 0, 

Proof. The sums, L:i=l Xiei, with the filtration Xn, is a martingale then by (P2), 

a a 

sup LlElxieil2P = lElell2Psup LlElxil2P =O(a). 
e i=l e i=l 

The lemma follows by Lemma 1, (P3) and (P4). 0 

The following lemma states some easy albeit essential properties of q. 

Lemma 3 
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Proof. By (P6) 

inf q/o:2 = inf x"'((3/o:)2 +2x",((3/o:) +1 ~ inf(x'" - x:)/x'" ~ m:r:/M:r:,e e e 

o 
Consider the first assertion of Theorem 2. For d defined in (9) choose 6 > 0 such that 

6 < min{l, 2k/(k +2)}, d < k6/2, and d < p6. 

For f > 0, define the stopping time n'" =n"'(a,6,o:,(3,f) by 

(11) 

Define the set 

where 

(12) 

and Zo is defined in (P5). Hence on the set Aa, 

Lemma 4 states the JP(AC) tends to zero, Lemmas 5 and 6 show that an'" and lino converge to 
(j and q. Lemma 7 proves the first assertion of Theorem 2. 

Lemma 4 For f > 0, 
Hm sup fdJP (A~) = 0. 

a..... oo e 

Proof. Since Sn ~ tn by Holder's inequality, Jensen's inequality and (P2) 

sup lEstaJ < suplE I:.. x; 
e i=ler 

< s~plE laJk;l t;lxil2k 

e 

( C n' 
laJ 

laJk-l sup L:lElxil2k = 
e i=l 

= o (ak) . (14) 

6 
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Since Sn is nondecreasing in n, 

{a 2: n*} ~ {SlaJ 2: Sno} ~ {SlaJ 2: (a/{3)4(J2 q(1 +f/} 
then by (14) the first probability is 

s~p JP (. 2: n') :; s~p (.4U2~; +,)'rEst.J = (J+ ,)-"0 (.-tk). 
Since n* is a stopping time, 

{n* > nO} ~ {(a/{3)4(J2q(1 + f)S 2: Sno} ~ {~2: ~4~0 (1 +f)S} ~ {~ 2: zo}
SnO a (J q SnO 

then by (P5) the second probability is 

sup IP (n* > nO) ~ sup IP (~ 2: zo) = sup 0 ((nOr2P) = (1 +fr~O (a- fk ) • 
e e SnO e 

Since SnO-l < (a/{3)4(J2 q(1 + f)S then for n* ~ nO 

SnO- (a/{3)4(J2 q (1 + f) < SnO- SnO-l - (a/{3)4(J2 q [(1 + f) - (1 + f)S] 

< (xno - XnO_l)2 - (a/{3)4(J2 q(1- 6)f 

< 4 sup x~ - (a4 
/ (32)4mf

l$n$nO 

where m > °is such that infoee (J2(q/{32)(1- 6) 2: 4m. Then by (P2), 

(32 ) k nO 
< sup -:r- LIE Ix n l2k 

(e a mf n=l 

= f-(k-S)O (a-~(k-l)). 

Since fJ < 2k/(k +2) then k - 6 2: k6/2 2: d. The result follows by comparing these rates. 0 

Lemma 5 For f o > 0, 

For f E (0,1), 

lim sup IP (inf 0; < (1 - f) (J2) = o. 
a.....a e n>a 

A similar statement is proved in Lemma 5, Coleman (1994). 

Lemma 6 For f o > 0, 

lim sup sup fdIP (tIno +s:J 2: (1 + f)~ q,Aa) = o. 
a..... oo e f>fo 

For f E (0,1), 

lim sup IP (inf tin ~ (1 - f) q) = O. 
a-oo e n>a 
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Proof. Some algebra yields, 

qn - q = Sn (/3n - (3)2 +2(3Sn (/3n - (3) + (32 (tn - x*) 
n n n 

+ [2a€n +2(3xn€n +€;] + [2(3a(xn - x*)]. 

On the set Aa, 2zo(sn ojn*) ~ 1, s:J $ [(aj(3)4(j2 q(1 + f)Sr t = 0 (a-f)and n* > a, by 
Lemma 3 there exist M > 0 such that 

Let m = m(fo,8) > 0 be such that (1 + f)2
6 
-1 ~ 8mo

R.
for all f > fo• Hence 

_1. 6) (1 ( _1.) £)lP (qno+sno4 ~(I+f)2q,Aa $lP q Iqno-ql+sn! ~8mo,Aa 

can be bounded by the sum of eight probabilities. The first probability is 

Et. ( s2. m 6)lim sup sup f 2 lP sup -T l(3n - (31 2 ~ M f2 = O. (15) 
0--+00 e f>f o n>a n 4" 

The bound follows from Lemma 2. Lemma 2 applies to the second probability, (P8) applies 
to the third, Lemma 1 applies to the fourth and sixth, (P4) applies to the fifth, (P7) applies 
the seventh and the eighth is zero for a sufficiently large. The second assertion is proved in a 
similar manner. 0 

Lemma 7 For f o > 0 

Proof. Fix f o > O. Define the event 

By Lemmas 4, 5 and 6, 
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--------------------------------------------

Choose M = M(£0,6) > 0 such that for all £ > £0' 

(1+ <)1 [(1+~) I - (1 +<)1] '" -M<l. 

On the set Ba, (a/{3)4(j2 q(1 + £)6" ::; Sn' < (a/{3)4(j2q(1 + £) and 

This quantity is maximized by replacing Sn' with it's lower bound. Hence 

4 

< {33(j2a q(1+£)4u[(1+ 2
£)t -(1+£)4t] 

< -a2m(nO)tM£~ 

where m > 0 is such that m ::; infa (jy'Q/({3A) and nO was defined in (12). By (13) and 
the first assertion of Lemma 2.1, 

s~p JP (s, '" ;>q(1+ <),B.) 

< s~p JP (f)Xi - xn' )ei +Sn' {3 < as!. &~o (qno +s:J) t ,Ba) 
a t=1 

< supIP ( sup (nO)-! 1f:(Xi - xn)eil > a2mM£~) 
a 1~n~nO i=1 

= £-P6"O(a-3P). 

o 
Consider the second assertion of Theorem 2. For £ E (0,1), define 

n* = sup {nlsn ::; (a/{3)4(j2 q(1-£)}. 

Then 

(16) 

Lemma 8 

sup JP (so::; S". ::; SLaJ) = O(a-P ). 
a� 

Proof. Let B = (2{3*)-i and define the set� 

'Da = {SLaJ::; a2 B}.� 
Then by (14),� 

(17) 
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On the set 'Da n {sn ~ SO} with 0 < fJ < fJ"ai, and a sufficiently large, 

~ 

sup snfJ - as~ 
3:5n:5a 

Since 

~ suplP ( sup t(Xi - xn)ei +snfJ - as! ~ 0, Sn ~ so, 'Da) 
e 3:5n:5ai=1 

< suplP ( sup i)Xi -xn)ei ~ (SO)f~) 
e 3:5n:5a i=1 2 

= 0 (a-P) • 

o 
Two preliminaries are needed before analyzing the second set in (16). The first is to approx­

imate the sum, 0'-1 2::£=1 (Xi - xn)ei, with a Brownian motion. This requires the martingale, 
0'-12::£=1 (Xi - x .. )ei, the sum 

n n 

rn =0'-2 L IE ((Xi - x .. )2e~IXi_l) =L(Xi - x.. )2 = sn + n(xn - x.. )2 (18) 
~1 ~1 

and the following strong approximation result for martingales, adapted from Theorem 4.4, 
Strassen (1965). 

Theorem 3 Let e ~ IRk for k a positive integer, () E e and ea ~ e such that ea' ~ ea for 
all a' ~ a. Assume ei satisfy (E), di =di(()) are such that di is independent of {ej,j ~ i} and 

a 

sup L IEldil2k = O(a). 
e i=1 

Then, without loss of generality, there exist Brownian motions W(t) = We(t) such that for 

, > ~, ~ < " < " " ~ (6k +p - 2)/4p and f > 0, 

SUPf2PlP (supn-'Y 10'-1 tdiei - W (td~) > f) = 0 (a-(2'Y'-~)P). 
e n>a i=1 i=1 

Proof. See Theorem 3, Coleman (1994). 0 

Here as in Strassen, the phrase, without loss of generality, means that there exist a proba­
bility space with a Brownian motion and random variables equal in distribution to the original 
random variables such that the relation is satisfied. 

Lemma 9 

2P 

sup IE sup L(Xin - x.. )ei 1 = O(aP). 
e 3:5n:5a I i=1 

10 
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For <p > ~ and f. > 0, 

There exist Brownian motions W(r) = Wo(r) such that for f. > 0, 

Proof. The sums Li=l (Xi - X.. )ei with the filtration Xn is a martingale and 

The first and second assertions follow from Lemma 1. Since 

the third assertion follows by (P5), (P7), Lemma 1 and Theorem 3. 0 

The second preliminary result is the following lemma. 

Lemma 10 Let W(r) be a standard Brownian motion, c =c(a,a:,f3) > 0, such that infe ac--­
00 as a ~ 00, 

~}ac ( 1 - 1) and rw =. { mf rlr? SO and W(r) + rJ.l ? acrt .a' = - r::-::::n 
SO v acso 

4Then for ac > e and °< J.l ~ a', 

JP ( 1W ~ (: -If) 4) ~ 11 (1 - <I' (VaCB")) +4.c</> (VaC - 1) 

where Cl> and <p are the distribution and density functions of a N (0,1) random variable. 

After rescaling for c this lemma is the second result in Proposition 2.3 of Keener and 
Woodroofe( 1992). 

Lemma 11 For f. E (0,1), 
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Proof. Fix f E (0,1). Define the set 

Sn f 12 
[a = inf - ? (1 - -) .1.}{n>a Tn 4 

then 

n[~ = {sup T > (1 - -4 
f)-t2} ~ {sup!!:... > Zo} U{suP(Xn _ x*)2 > _f_}.

n>a Sn n>a Sn n>a 48zo 

By (P5) and (P7), 

Hm sup JP ([~) = O. (19)
a.....oo e 

Define the set 

F, ~ {~~das!o-la!qi-an] - [(1 - ~) 1ar1u-lql] ~ o,£.} 
where 

n 

~n = 0'-1 ~:)Xi - Xn)ei - W(Tn ) 

i=1 

For a sufficiently large and all (Q, f3) in 0, 

_il. 
Then, multiplying by a-ITn 40', 

Fe = a 

By Lemmas 5,6 and 9 and (19) 

Hm sup JP (F;) =O. (20)
a.....oo e 

On the set Fa n{n* > a} and for a sufficiently large, define R as 

12 
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3 

Then 

{SlaJ < ST ::; Sn.,.ra } 

C {~( Xi - xnled 'nf3 ~ a,!ut (<in + ,~t)t , forsome n E (a, n.], .1".} 

c {W(rn) +rn~ ~ ;s~a!qt - Llnforsomen E (a,n.],.ra } 

C { 
(3 ~ 1 1W(rn)+rn;~ar~(1-2q4 ( f) t1- 2 

}forsomenE(a,n.],.ra 

~ { 
(3W(r) +r; ~ ~ _1 1ar 4(1 2q4 ( f) t1- 2 }forsomer E [sO,R] 

c {rw::;R} (21) 

where TW is the stopping time in Lemma 10 with 

(3 (3. 1 
and J1 =- < -a 4 • (1 (1 

Hence by Lemma 10, 

::; lim sup lP (rw ::; R) = ° (22) 
a-+O o<;3<;3~ 

The result follows by (19) and (22). 0 

Proof of Theorem 2. Lemmas 7,8 and 11 imply the first two assertions of Theorem 2. For 
the final assertion of Theorem 2, let d' < d. Then for f E (0, 1), 

d' sup lE Is; - 11 = sup [lE (Is; - 11 dl 
; s; ::; 1- f) + lE (Is; - 11 dl 

; Is; - 11 ::; f)
e e 

+ lE (Is; -lldl 
; 1+f::; s; ::; 2) + lE (Is; - lld' ;s; ~ 2)] 

d< s~p [lP (s; < 1- f) + f ' + lP (s; ~ 1 + f) + f: lP ((s; -ll ~ n)] 
e n=} 

00 

d< f + f ' + f +o(1) L n- f, 
n=} 

< 4f 

for a sufficiently large. Since f was arbitrary the result follows. 

Proof of the Main Result, Theorem 1 

In this section let nO = l4zo( a/ (3)4(12qJ. It was previously defined in (12). For f E (0,1), define 
the set 
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Lemma 12 

Hm sup JP (9~) =0. 
a-co e� 

Proof. Consider� 

By Theorem 2, the probability of the first set tends to zero, uniformly over e. By Lemma 8, 
the probability of the second set is 

(23) 

Since 

{nO < r,s; < 1+ f} ~ {sno ~ ST'S; < 1+ f} ~ {sno ~ (aJ{3)4(J2 q(1 +f)} ~ {nos~; ~ zo} 

By (P5), the probability of the third set is 

sup JP (nO < r,s; < 1+ f) ~ sup JP (!!.... ~ Zo) =supO ((nO)-~) =0 (a- tk ). 
e e Sno e� 

o� 
Let� 

By Lemma 3, infe Na -. 00 as a -. 00.� 

Lemma 13 For 6 E (0,1),� 

r� 
lim suplP (IN -11> 6) = 0,

a_co e a 

and 

r JP ( 2:[-1 ei 2:~1 ei > 6) ° 
a~~ s~p (J..[i - (J~ = . 

Proof. Given 6 E (0,1), choose f E (0,1) such that on the set ga, 

14 
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On the set ga, 

(x· - x~) [I~~ -11- 26]� 

= Is1~ S; - (x· - X~)I- 26(x· - x~)
 

< Is1~ - 11 S; - 6(x· - x~) + IS; - (x· - x~)I- 6(x· - x~) 

~ (1 +6) I~ -(x· - x~)I- 6(x* - x~) 

< (1 +6)SUp !Sn - (x· - x~)I- 6m::: 
n>a n 

then by (P7) and (P8) 

Hm sup JP (I N~ - 11 > 26, ga) ~ Hm supJP (sup ISn - (x* - x~)1 > 6m:::~) =O. 
a-oo e T a-oo e n>a n 1+ u 

The first assertion follows easily. Anscombe's Theorem, Anscombe (1952), applies to the second 
and third assertions, see Section 1.3 of Woodroofe (1982). The first condition of Anscombe's 
Theorem is the first assertion of this theorem, the second is uniform continuity in probability, 
(D.e.LP.). For the second assertion this is, for all 6 > 0 there exists A> 0 such that 

Now, 

1 
2:;:~\+k(Xi-x.)ei _ 2:~l(Xi-x.)ejl
 

avNa+k a~
 

< 2:~l+k(Xi - x.)ej 2:f-.al(Xi - x.)ej + 2:~l(Xi - x.)ei _ 2:f:~\(Xi - x.)ej 
(JVNa + k avNa +k avNa +k a~ 

< 12:~;Jak+l(Xi - x.)ej 1+1 ~ _1112:~1(Xj - x.)ei I. 
a~ VNa+k (J~ 

Set A= 64 • By Lemma 9, 

Since 

VNa I (d)_l 1 ~4max - 1 =1 - 1+ u 2 < -u 
1'S.k'S.54 N a IVNa + k - 2 
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then by Lemma 9 the second probability is 

This proves the second assertion of the lemma. The proof of the third assertion is similar. 

Lemma 14 For 0 > 0, 

· lP(la+f3xr/f a+ f3 x .. ( .. 2)-11 ~)1lm sup 1 - - 1 X - X.. 2 > u =0 
a-+oo e q2 Sr q2 

and 

1· lP ( f3 ~r + (xr - x.. )(a + f3xr)/f f3 (.. 2)11 ~) 0lm sup "1" - 1 - - "1" x - X .. 2 > u = . 
a-+oo e q2 7 q2 Sr q2 

for a sufficiently large. The last two assertions follow easily from the following bounds. By 
Theorem 2 and Lemma 13, 

Hm suplP (I 2.. (X" - x:) - 11 >0) = Hm suplP (1.2.....!.. -11> 0) = O. 
a-+oo e Sr a-+oo e N~ S; 

and by (P7) and (23), 

lim sup lP (1xr - x.. 1 > 0) = Hm sup [lP (sup IXn - x.. 1 > 0) + lP (7:::; a)] =O. 
a-+oo e a-+oo e n>a 

o� 

Lemma 15 There exist Brownian motions, W(z) =We(z), such that for 0> 0,� 

Hm suplP (a2 (~r _~) _W~) > 0) =O. 
a-+oo e f3r f3 Na 

Note that W(Na)j.,fN; '" N(O, 1).� 

16� 

,---------_._-------­



Proof. Note that, 

where 

and 

Hence 

(25) 

where 

By (P6) and Lemma 2, 

(26) 
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It's sufficient to show the four terms in (25) converge in probability to zero uniformly in 0. 
Consider the first term in (25). By Theorem 3, 

2:~a1 (Xi - X.. )€i and 2:[:.a1€i 

(JVNa (JVNa 

are stochastically bounded, uniformly over 0. Hence by Lemma 13, 

2:i-1(Xi - X.. )€i d 2:i-1 €i- an 
(J.Ji (J.Ji 

are stochastically bounded, uniformly over 0. By Lemma 14 and Theorem 2, bT' -p 1, CT' -p Co 
and dT' -p do, uniformly over 0. Hence the first probability tends to zero uniformly over 0. 

By Lemma 13 and (26) the second term in (25) converges to zero, uniformly over 0. 
Consider the third term in (25). The sums 2:i::1(do - Co(Xi - x .. ))(J-1€i with the filtration 

Xn , is a martingale. By (P2), (P5) and (26) 

a 

sup L lEl(do - Co(Xi - x.. ))1 2p = O(a). 
e i=l 

By Theorem 3, with, = t and " = i, 

Anscombe's Theorem applies to the fourth probability in (25). Two assumptions must be 
verified. By (P7), (P8) and (26) 

4lim sup lP (I zNNa - 11 > 6) 
a-+oo e a 

< }i.~ s~p [lP (C~ I~: - (X" - X:)\ > 6;) 
+JP (Id~ - c~(x' - x;) - 11 > ~) + JP (2Ic,ld, I"N. - x.1 > b;)] 

= o. 

Here (P7) and (P8) apply to the first probability, the second probability is zero and (P8) 
applies to the third probability. The second assumption is U.C.I.P., by Levy's Inequality 

sup lP ( . sup 1W(z) - W(Na
) I > 6) 

e Iz-Na l<64 N a ~ ~ 

< 4 s~plP (IW((l- 64 )Na ) - W((1 +64 )Na )1 > ../Na6) 

= 862 
• 

18 



o 
Lemma 13 implies the first assertion of Theorem l. 
The proof of the second assertion of Theorem 1 requires the following lemma. 

Lemma 16 

Proof. Claim for k' < k, 

(28)s~p lE ( (:t T> a) ,;; s~p lE (~~~ C~ t Sn ~ S') = 0 (1) . 

By (P5) and for z ~ Zo and m ~ 1 

If z > am +1(sO)-1 then the probability is zero. If z ::; arn+1(sO)-1 then (SO)-t z-t ~ a-t(m+l). 
Hence 

Summing m over the positive integers yields 

supIP (supns~l > Z,Sn ~ so) - z-to (_1_)
e n>a - log(a) 

and (28) follows. Since p/ < 4kpj(5p +4k) then 

5p'p 5p' 5(p/)2 
k > 4(p - pi) = "4 + 4(p - pi)' 

Choose p" such that p/ < p" < p and 

5p'p"
k>-~­

4(p" - pi) 

At stopping, 

Therefore 

(3 = I(3ST-T2:I-l(X~-Xn)Yil::; 2:i-l(Xi~XT)ei
~-1 
(3'1' 2:i=l(Xi - Xn)Yi as~ 

19 



The first and second expectations are bounded in Lemma 2, the probability is calculated in 
(23), the third expectation is finite by (28). 

Consider the second expectation. By (P2) and (P6), 

supIE ( sup IXn - X*I) 2k ~ 22k (SUPIE t Ixn l2k +M;k) =O(a). 
e 3:$n:$a e n=l 

By (23) and (P7), 

sup IElxT- x*1 2p
' < sup [IE (sup IXn - x*1 2P'; 3 ~ T ~ a) +IEsup IXn - X*1 2P']

e e 3:$n:$a n>a 

< sup [lE (sup IXn - x*1 2k
)];;' [JP (3 ~ T ~ a)(/ +0(1) 

e 3:$n:$a 

, k-p' 

= [O(a)]T [O(a-P)] k +0(1) 

= 0(1). 

In a similar manner 

P 
sup lEleTIP' < sup [IE ( sup lenI2P)] ~ [JP (3 ~ T ~ a)] 2 2';,e' + [IE sup len IP] ~ 
e e 3:$n:$a . n>a 

20 
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4 

The probability is bounded in (23) and the expectations are bounded by the Marcinkiewicz­
Zygmund inequality, see Theorems 3 and 4 pages 369-370 of Chow and Teicher(1988). 0 

For the second assertion of Theorem 1, consider 

By Schwarz' inequality, 

PI 

supJE If!. (~T -~) I e a f3T f3 

I
PI P 

I { f3 [ f3 2 
PI

] t If3lpl 2 I t [ I f3 2'] t< 4Ps~p 1 + ~x* JE ~T - 1 ~ [JE \xT- x.1 p] JE ~T - 11

+IH' [lE le.I"'] t [lE I:. -fr + I~I" lE le.I" } 

= 0 (alf) [0 (a- rnin{P,2pl})]t +0 (alf) 0(1) [0 (a- rnin{P,2P,})]t� 

+0 (a~) 0(1) [0 (a- rnin{P,2pl})] t +0 (a~) 0 (a~ipl)
 

---- O. 

o 

An Applicable Procedure 

In this section, a class of procedures is shown to satisfy assumptions (PI) through (P8). Set 
constants M, m such that 0 < m < M < 00. Let 
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where for i = 1, 2 and 3 the experim~nter chooses constants li and Ui such that lid ~ M and 
m ~ Uj ~ M, for i ~ 4, lj = l(Oi-I,13i-l) such that for (a,b) E JR, Il(a,b)1 ~ M and for all 
E > 0 there exist 0 > 0 such that 

sup Il(a,b) -l(a',b')1 ~ E, (29)
la-a'I::5 6.lb-b'I::58 

Ui = u( 0-;_1) such that for S ~ 0, m ~ u(s) ~ M and for all E > 0 there exist 0 > 0 such that 

sup Iu(s) - u(s')1 ~ E 
Is-s'I::58 

and for i ~ 1, Vi are LLd. r.v.s such that {Vi} is independent of {ej}, IEvl = 0, IEvf = 1 and 
for some k ~ p, IElvllk < 00. 

Assumptions (PI) and (P2) are easily verified. Consider (P3), since 

n n n 
IXn L eil ~ MI L eil + Mlvnll L eil 

i=1 i=1 i=1 

then by independence assumption (P3) is 

n n n 

supIE sup IXnLeil2P ~ MIE sup ILeiI2P+MIE sup Ivnl2PIE sup ILeiI2p=O(aP). 
e 3::5 n ::5 a i=1 3::5n::5 a i=1 3::5 n::5a 3::5n::5a i=1 

The first and third expectations are O(aP) by the first assertion of Lemma 1. The second 
expectation is O( 1) by Marcinkiewicz-Zygmund inequality, see Theorem 3, pg. 369, Chow and 
Teicher (1988). For (P4), let <p' be such that t < <p' < min{<p, n. Then by Markov's inequality 
and independence 

sup (2~)2P n> (sup n-</Jlxnt eil > E) 
f>fo n>a i=1 

< sup (2~1)2P n> (supn-</Jlteil > 2~) 
f>fo n>a i=1 

+a-(I-</J')2PIE (sup In-</J' t ViI 2P) a-(</J-</J')2PIE (sup In-</J' t eil2P) 
n>a i=1 n>a i=1 

O(a-(</J-t)2P) 

The probability is bounded by the second assertion of Lemma 1 and the expectations are O( 1) 
by Marcinkiewicz-Zygmund inequality, see Theorem 4, pg. 370, Chow and Teicher (1988). For 
(P5), define Wl = SI = 0 and W1 =0'(0, n), and for n ~ 2, 

n - 1 _ 2 
W n = sn - sn-l = --(in + Un Vn - xn-d and W n = 0'( ell'''' en-ll V2, ... , Vn).n . 

Then W n is measurable W n, Vn is independent of W n- 1 and In, Un and Xn-l are measurable 
W n - 1 • The sums, 
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with the filtration Wn is a martingale with 

n 

2)E IWi - IE (wilWi_dl k =O(n). 
i=l 

For n ~ 2, 

For a ~ 1 and Zo > 41m2 , 

In 1 ) sup JP (sup ns~l ~ Zo) < supJP sup-- LWi ~--
e n>a (e n>a n i=2 Zo 

< sup JP (sup 2:. It [Wi - IE (WiIWi-l)]1 ~ m 
2 _..!.)

e n>a n i=2 4 Zo 

< O(a-t ). 

Let 
x. = l(a,;3) and x· =u((72) + x~. 

Then max(x., x·) ::; u((72) +M2 +M and x· - x~ ~ u((72) and (P6) is satisfied. By (P5) and 
the second assertion of Lemma 2.1, which requires (P2) and (P4), 

Ern sup JP (sup I~n - ;31 ~ 6)
a-oo e n>r5a 

< l.!..m sup [JP (sup n-
1 It(X i - xn)eil ~ i) + JP (sup ~ ~ zo)J 

a 00 e n>r5a i=l Zo n>r5a Sn 

= 0, (30) 

for 6 > O. Similarly, 

Ern sup JP (sup lan - al ~ 6) = 0, (31) 
a-oo e n>r5a 

for 6 > O. Fix £ > 0 and choose 6 > 0 such that 26M < £/4 and 

£ 
sup Il(a,b) -l(a,;3)1 < 4' 

la-o:l<r5,lb-~I<r5 

Since Il(a,b) -l(a',b')1 < 2M, by (30) and (31). 

Ern sup JP (sup Ix. -1n l> £) (32) 
a-oo e n>a 

< Ern sup [JP (supn-1 t Il(a,;3) -l(ai-l,~i-l)1 > -2£) 
a-oo e n>a i=l _ 
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l+JP (supn- t II(a,,8)-I(ai_}'~i-dl > ~)] 
n>a i>no 2 

< l.!.m sup [JP (SUp I~n -,81 ? 6) + JP (SUp lan- al ? 6)]
a 00 e n>oa n>oa 

O. (33) 

Here l(ai-I, ~i-d = li for i =1,2 and 3. By Lemma 1 and (33), 

Hm SUp JP (SUp IXn - x.1 > £)
a-oo e n>a 

~ Hm SUp [JP (SUp IUn - x.1 > -2£) + JP (SUp Ivnl > _£_)] 
a-oo e n>a n>a 2M 

= O. 

Since Il( a, b)1 < M, uniformity for £ ? 0 is immediate. Verification of (P8) is similar. 
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