4 research outputs found

    On a Linear Program for Minimum-Weight Triangulation

    Get PDF
    Minimum-weight triangulation (MWT) is NP-hard. It has a polynomial-time constant-factor approximation algorithm, and a variety of effective polynomial- time heuristics that, for many instances, can find the exact MWT. Linear programs (LPs) for MWT are well-studied, but previously no connection was known between any LP and any approximation algorithm or heuristic for MWT. Here we show the first such connections: for an LP formulation due to Dantzig et al. (1985): (i) the integrality gap is bounded by a constant; (ii) given any instance, if the aforementioned heuristics find the MWT, then so does the LP.Comment: To appear in SICOMP. Extended abstract appeared in SODA 201

    Fixed-Parameter Algorithms for Computing Kemeny Scores - Theory and Practice

    Full text link
    The central problem in this work is to compute a ranking of a set of elements which is "closest to" a given set of input rankings of the elements. We define "closest to" in an established way as having the minimum sum of Kendall-Tau distances to each input ranking. Unfortunately, the resulting problem Kemeny consensus is NP-hard for instances with n input rankings, n being an even integer greater than three. Nevertheless this problem plays a central role in many rank aggregation problems. It was shown that one can compute the corresponding Kemeny consensus list in f(k) + poly(n) time, being f(k) a computable function in one of the parameters "score of the consensus", "maximum distance between two input rankings", "number of candidates" and "average pairwise Kendall-Tau distance" and poly(n) a polynomial in the input size. This work will demonstrate the practical usefulness of the corresponding algorithms by applying them to randomly generated and several real-world data. Thus, we show that these fixed-parameter algorithms are not only of theoretical interest. In a more theoretical part of this work we will develop an improved fixed-parameter algorithm for the parameter "score of the consensus" having a better upper bound for the running time than previous algorithms.Comment: Studienarbei

    Fixed parameter algorithms for the minimum weight triangulation problem

    No full text
    We discuss and compare four fixed parameter algorithms for finding the minimum weight triangulation of a simple polygon with (n - k) vertices on the perimeter and k vertices in the interior (hole vertices), that is, for a total of n vertices. All four algorithms rely on the same abstract divide-and-conquer scheme, which is made efficient by a variant of dynamic programming. They are essentially based on two simple observations about triangulations, which give rise to triangle splits and paths splits. While each of the first two algorithms uses only one of these split types, the last two algorithms combine them in order to achieve certain improvements and thus to reduce the time complexity. By discussing this sequence of four algorithms we try to bring out the core ideas as clearly as possible and thus strive to achieve a deeper understanding as well as a simpler specification of these approaches. In addition, we implemented all four algorithms in Java and report results of experiments we carried out with this implementation
    corecore