2,813 research outputs found

    Berry phase effect in anomalous thermoelectric transport

    Full text link
    We develop a theory of Berry phase effect in anomalous transport in ferromagnets driven by statistical forces such as the gradient of temperature or chemical potential. Here a charge Hall current arises from the Berry phase correction to the orbital magnetization rather than from the anomalous velocity which does not exist in the absence of a mechanical force. A finite-temperature formula for the orbital magnetization is derived, which enables us to provide an explicit expression for the off-diagonal thermoelectric conductivity, to establish the Mott relation between the anomalous Nernst and Hall effects, and to reaffirm the Onsager relations between reciprocal thermoelectric conductivities. A first-principles evaluation of our expression is carried out for the material CuCr2_2Se4x_{4-x}Brx_x, obtaining quantitative agreement with a recent experiment.Comment: Published version in PR

    Orbital magnetization and its effect in antiferromagnets on the distorted fcc lattice

    Full text link
    We study the intrinsic orbital magnetization (OM) in antiferromagnets on the distorted face-centered-cubic lattice. The combined lattice distortion and spin frustration induce nontrivial kk-space Chern invariant, which turns to result in profound effects on the OM properties. We derive a specific relation between the OM and the Hall conductivity, according to which it is found that the intrinsic OM vanishes when the electron chemical potential lies in the Mott gap. The distinct behavior of the intrinsic OM in the metallic and insulating regions is shown. The Berry phase effects on the thermoelectric transport is also discussed.Comment: 18 pages, 6 figure

    Thermoelectric generation based on spin Seebeck effects

    Full text link
    The spin Seebeck effect (SSE) refers to the generation of a spin current as a result of a temperature gradient in magnetic materials including insulators. The SSE is applicable to thermoelectric generation because the thermally generated spin current can be converted into a charge current via spin-orbit interaction in conductive materials adjacent to the magnets. The insulator-based SSE device exhibits unconventional characteristics potentially useful for thermoelectric applications, such as simple structure, device-design flexibility, and convenient scaling capability. In this article, we review recent studies on the SSE from the viewpoint of thermoelectric applications. Firstly, we introduce the thermoelectric generation process and measurement configuration of the SSE, followed by showing fundamental characteristics of the SSE device. Secondly, a theory of the thermoelectric conversion efficiency of the SSE device is presented, which clarifies the difference between the SSE and conventional thermoelectric effects and the efficiency limit of the SSE device. Finally, we show preliminary demonstrations of the SSE in various device structures for future thermoelectric applications and discuss prospects of the SSE-based thermoelectric technologies.Comment: 30 pages, 15 figures, 1 table. Figure 2 was revised to correct the information about Ref. [86], Proceedings of the IEEE (2016

    Lower Pseudogap Phase: A Spin/Vortex Liquid State

    Full text link
    The pseudogap phase is considered as a new state of matter in the phase string model of the doped Mott insulator, which is composed of two distinct regimes known as upper and lower pseudogap phases, respectively. The former corresponds to the formation of spin singlet pairing and the latter is characterized by the formation of the Cooper pair amplitude and described by a generalized Gingzburg-Landau theory. Elementary excitation in this phase is a charge-neutral object carrying spin-1/2 and locking with a supercurrent vortex, known as spinon-vortex composite. Here thermally excited spinon-vortices destroy the phase coherence and are responsible for nontrivial Nernst effect and diamagnetism. The transport entropy and core energy associated with a spinon-vortex are determined by the spin degrees of freedom. Such a spontaneous vortex liquid phase can be also considered as a spin liquid with a finite correlation length and gapped S=1/2 excitations, where a resonancelike non-propagating spin mode emerges at the antiferromagnetic wavevector with a doping-dependent characteristic energy. A quantitative phase diagram in the parameter space of doping, temperature, and magnetic field is determined. Comparisons with experiments are also made.Comment: 22 pages, 12 figure

    Magnetic-field-induced chiral hidden order in URu2Si2

    Full text link
    Two of the most striking and yet unresolved manifestations of the hidden order (HO) in URu2Si2, are associated on one hand with the double-step metamagnetic transitions and on the other with the giant anomalous Nernst signal. Both are observed when a magnetic field is applied along the c-axis. Here we provide for the first time a unified understanding of these puzzling phenomena and the related field-temperature (B-T) phase diagram. We demonstrate that the HO phase at finite fields can be explained with a chiral dxy+idx2-y2 spin density wave, assuming that the zero field HO contains only the time-reversal symmetry preserving idx2-y2 component. We argue that the presence of the field-induced chiral HO can be reflected in a distinctive non-linear B-dependence of the Kerr angle, when a Kerr experiment is conducted for finite fields. This fingerprint can be conclusive for the possible emergence of chirality in the HO.Comment: 8 pages and 9 figures main text + 6 pages supplementary material. Philosophical Magazine: Special Issue: Focused Issue on Hidden Order in URu2Si2 (May 2014

    Scattering-Independent Anomalous Nernst Effect in Ferromagnets

    Get PDF
    Using the full-potential linearized augmented plane-wave method within the density functional theory, we compute all contributions to the scattering independent part of the thermoelectric conductivity tensor, namely the intrinsic contribution and the side-jump contribution. For the ferromagnetic materials bcc Fe, hcp Co, fcc Ni and L1_0 ordered alloys FePd and FePt, our investigations of the energy and temperature dependence of the intrinsic and side-jump contributions show that they are both of equal importance. Overall, our calculations are able to correctly reproduce the order of magnitude and sign of the experimentally measured signal, suggesting that the scattering independent part plays an important role in the anomalous Nernst effect of ferromagnets.Comment: 5 pages, 2 figures plus supplement, accepted for publication as a Rapid Communication in Physical Review
    corecore