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Scattering-independent anomalous Nernst effect in ferromagnets

Jürgen Weischenberg,* Frank Freimuth, Stefan Blügel, and Yuriy Mokrousov
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Using the full-potential linearized augmented plane-wave method within the density functional theory, we
compute all contributions to the scattering-independent part of the thermoelectric conductivity tensor α̂, namely,
the intrinsic contribution α̂ic and the side-jump contribution α̂sj. For the ferromagnetic materials bcc Fe, hcp Co,
fcc Ni, and L10 ordered alloys FePd and FePt, our investigations of the energy and temperature dependence of the
intrinsic and side-jump contributions show that they are both of equal importance. Overall, our calculations are
able to correctly reproduce the order of magnitude and sign of the experimentally measured signal, suggesting
that the scattering-independent part plays an important role in the anomalous Nernst effect of ferromagnets.
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When a thermal gradient is applied to a single-domain
ferromagnetic material, the anomalous Nernst effect (ANE)
shows itself as an electric field E that emerges in a direction
perpendicular to the applied thermal gradient −∇T and
perpendicular to the sample’s magnetization M.1 Prominently,
the Nernst signal can be used as a probing tool for the
vortex phase in type II superconductors2,3 and it has been
also discussed in spinel ferromagnets4 and on a surface of a
topological insulator.5 However, despite increasing interest in
this phenomenon in the past years,6 attempts to predict from
first principles the values of the ANE in metallic ferromagnets,
such as bcc Fe, have yet to be made.

It is convenient to quantify the ANE in terms of the
thermoelectric conductivity tensor α̂, also called the Peltier
or Nernst conductivity tensor. In linear response theory, the
expression for the charge current j in the presence of a weak
electric field and a small thermal gradient reads7

j = σ̂ · E − α̂ · ∇T , (1)

where the electric conductivity tensor is denoted by σ̂ . The
matrix elements of α̂ and σ̂ are related via the generalized
Mott formula8–10

α̂ = −1

e

∫
dε

∂f

∂μ
σ̂

ε − μ

T
, (2)

where e = −|e| is the electronic charge, ε the energy, and
μ the chemical potential of the electrons which appears in
the Fermi distribution function f (ε,μ,T ). In ferromagnetic
materials, we can replace the off-diagonal matrix elements of
the conductivity tensor with the transverse anomalous Hall
conductivity σ AHE,11 which is usually decomposed into an
intrinsic Berry curvature-driven contribution σ ic,12 and two
extrinsic, stemming from disorder, contributions. Of the latter
two, the first is the so-called side-jump contribution σ sj, which
is caused by the scattering of electrons off impurities but which
paradoxically does not depend on their concentration ni .13 The
second disorder-driven contribution is the skew scattering σ sk,
which is inversely proportional to the impurity concentration,
i.e., σ sk ∝ 1/ni .14,15 The Mott relation, Eq. (2), implies that
the thermoelectric conductivity tensor can be decomposed in
an analogous way:

α̂ = α̂ic + α̂sj + α̂sk. (3)

The difficulties in understanding the origins of the anomalous
Hall effect (AHE) have greatly impeded the progress in
the field of the ANE as well. For example, on the side of qual-
itative theory of solids, we are aware of only a single estimate
for the value of α̂ic in the cuprate CuCr2Se4−xBrx .16 However,
as we have recently shown, all scattering-independent contri-
butions to the AHE, that is, σ̂ ic and σ̂ sj, can be calculated from
first principles on an equal footing from the knowledge of the
electronic structure of the pristine crystal alone.17 Since skew
scattering is suppressed for metals outside the extremely pure
regime,18,19 the calculated values for σ̂ ic and σ̂ sj allow for a
quantitative comparison between theory and experiment. In the
present Rapid Communication, we extend this methodology
to the ANE. We calculate all the scattering-independent
contributions to the thermoelectric conductivity tensor, α̂ic and
α̂sj, in bcc Fe, hcp Co, fcc Ni, and L10 ordered alloys FePd and
FePt. By comparison to experimental data, we show that α̂ic

and α̂sj provide the correct order of magnitude and sign of the
anomalous Nernst signal in transition-metal ferromagnets. We
also make predictions concerning the temperature dependence
of the scattering-independent ANE.

Our approach is based on electronic structure calculations
performed within the full-potential linearized augmented
plane-wave method as implemented in the Jülich density
functional theory code FLEUR.20 The matrix elements of the
multiband Bloch Hamiltonian Ĥ (k) in the basis of maximally
localized Wannier functions21,22 have been computed using
the Wannier interpolation technique23 and inserted into the
equations for σ̂ ic and σ̂ sj obtained within the Kubo-Středa
formalism,24 assuming short-range disorder in the system.25

The knowledge of any free parameters is not required in this
scheme. For the evaluation of the integral in Eq. (2), we
adopted an energy grid that was denser at low temperatures,
since the energy derivative of the Fermi function becomes a δ

distribution in this limit. Near room temperature, we found that
an energy spacing of �ε ≈ 5 meV offered the best trade-off
between accuracy and computational cost, leading to an error
of about 2% for α̂.

It follows from an argument by Berger26 that large values
for the components of α̂ could not arise if electrons of different
energies experienced an AHE of the same magnitude and sign,
since the transverse velocities of electrons diffusing down the
applied temperature gradient would then cancel with those
of the less energetic electrons diffusing up the temperature
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FIG. 1. (Color online) ANE at T = 300 K in Fe, Ni, Co, FePt, and FePd for different magnetization directions. The bar diagrams in the
first row of (a), (b), (d)–(f) show the values of α = αic + αsj at different energy positions. The true Fermi energy level in each material lies at
the position of the middle vertical line. The line diagrams in the lower row of (a), (b), (d)–(f) depict the energy dependence of σ = σ ic + σ sj. In
(b), hatched bars and dotted lines stand for GGA + U calculations in Ni with U = 3.9 eV and J = 1.1 eV. In (d)–(f), hatched bars and dotted
lines stand for calculations in Co, FePt, and FePd with the magnetization pointing along the [110] direction. A sketch of the experimental setup
is shown in (c).

gradient and the net transverse current would be zero. The
same can also be deduced from the Mott formula Eq. (2):
Since the product (∂μf ) · (ε − μ) is an antisymmetric function
with respect to the Fermi energy level εF = μ, the ANE would
vanish if the AHE conductivity σ AHE was a symmetric function
around εF , i.e., if it was equal for a pair of energy values with
the same distance to εF .

In Figs. 1(a), 1(b), and 1(d)–1(f), the component σ ≡
σ · M̂ of the anomalous Hall vector σ and the component
α ≡ α · M̂ of the thermoelectric conductivity vector α parallel
to the magnetization direction M̂ ≡ M/|M| are shown. They
have been computed from Eq. (2) at room temperature as
a function of the Fermi energy level in Fe, Ni, Co, FePt,
and FePd. For the [001] magnetization direction, σ and α

correspond to the tensor elements σxy and αxy , while for the
[110] magnetization direction, they correspond to the tensor
elements (σyz + σzx)/

√
2 and (αyz + αzx)/

√
2.27 In bcc Fe, we

observe that the intrinsic contribution σ ic is nearly symmetric
around the Fermi level εF , resulting in a rather small value of
αic. If we shift the Fermi energy artificially by +0.08 eV, the

course of σ ic gets more asymmetric with respect to the new
Fermi energy and the value of αic increases significantly by a
factor of 6. As a consequence, the total value αic + αsj changes
sign and becomes positive. If the Fermi energy level is lowered
by −0.12 eV instead, all contributions become negative. In
general, we find that the thermoelectric conductivity in Fe,
Co, and Ni appears to be highly sensitive to the position of the
Fermi level, suggesting that the ANE in ferromagnets can be
easily tuned by, e.g., suitable doping. On the other hand, for
the compounds FePd and FePt the Fermi energy dependence
of α is much less pronounced.

By now it is established that the side-jump contribution to
the AHE is important in FePd whereas the intrinsic AHE is
dominant in FePt.28,29 As follows from Figs. 1(e) and 1(f),
this statement also applies to the ANE in these materials, i.e.,
αsj(εF ) is as large as αic(εF ) in FePd, but only half of this value
in FePt. This crossover behavior is caused by the different
spin-orbit interaction strength of Pd and Pt atoms.29,30 In Fe
and Co, the magnitude of αsj(εF ) is greater than that of αic(εF ),
albeit σ sj(εF ) being smaller than σ ic(εF ) in both materials.
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TABLE I. Comparison of Q
ic+sj
1 with experimental data for Q1 in units of 10−11 V/(K G) near room temperature.

For Ni, the values of U and J are in eV.

Qic
1 Q

sj
1 Q

ic+sj
1 Q1 expt.a

Fe −0.52 −0.39 −0.91 −0.81 to −2.08
Co [001] 1.00 0.07 1.07 2.00 to 2.19

[110] 0.24 0.03 0.27
Ni U = 0.0, J = 0.0 −15.12 −1.09 −16.20 3.04 to 7.31

U = 1.9, J = 1.1 −4.40 1.98 −2.42
U = 3.9, J = 1.1 −0.28 1.48 1.20

FePt 4.61 1.27 5.88 5.60

aReference 27.

In analogy to the AHE,31 one might suspect that the ANE
is highly anisotropic with respect to the direction of the
magnetization in the crystal for hcp Co, and L10 ordered FePd
and FePt alloys, due to their uniaxial crystal structure. Indeed,
at the Fermi energy, the side-jump contribution αsj switches
its sign in Co and is distinctly reduced in FePd and FePt as the
direction of the magnetization is changed from [001] to [110]
direction. However, the anisotropy of the intrinsic contribution
αic is not that strong. Such a different dependence of αic and
αsj on the magnetization direction may be attributed to the
different distribution of σ ic and σ sj in the Brillouin zone of
these materials.17

The ANE in fcc Ni presents an exceptional case, since
the theoretical value of the thermoelectric conductivity in this
material is much larger than in other considered compounds
[see Fig. 1(b)]. In Ni, the intrinsic anomalous Hall conductivity
is sharply peaked near the Fermi energy, and the respective
value for the ANE depends on which side of the peak it
is evaluated. There are many indications, however, that the
large value of σ ic in Ni is mainly an artifact of the local
density approximation (LDA) or the generalized gradient
approximation (GGA), because correlation effects among the
3d electrons in this material become of crucial importance
for its properties.17,32,33 For this reason, we have adopted the
same approach as in our previous work and took the correlation
effects into account within the GGA + U scheme.34 For the
intra-atomic Coulomb repulsion and exchange parameters U

and J , we chose values up to 3.9 and 1.1 eV, respectively. This
choice of parameters has been found to greatly improve the
agreement of the calculated AHE in Ni. Figure 1(b) reveals
that correlations have also a significant effect on the energy
dependence of σ AHE and α in Ni. We observe that the peak
in the intrinsic contribution to the AHE flattens out, whereas
the side-jump contribution remains mostly unaffected upon
including the U . This can again be understood from the
different behavior of the two effects at the Fermi surface.17

Upon including U , the intrinsic contribution αic and the
side-jump contribution αsj change their sign and the magnitude
of the thermoelectric conductivity is greatly reduced.

For comparison with experiment, we consider the situation
in which a temperature gradient in the x̂ direction, −∂xT ,
is applied to an electrically isolated sample perpendicular to
the magnetization M ‖ ẑ [see Fig. 1(c)]. As a function of the
magnetic field strength |H| = Hz and magnetization |M| =
Mz, the Nernst effect obeys a law of the type Ey/(−∂xT ) =
HzQ0 + 4πMzQ1, where Q0 and Q1 are the ordinary and

anomalous Nernst coefficients, respectively.35 However, in
ferromagnetic materials, the ordinary Nernst coefficient is
very small,36 Q0 � Q1. The remaining coefficient Q1 is
generally measured in a zero-current configuration, jx = jy =
0, with the boundary condition ∂yT = 0.37 For a spatially
uniform sample in an experimental setup as depicted in
Fig. 1(c), it holds that σxx = σyy , σxy = −σyx , and likewise
for the components of α̂. In this scenario, we obtain from
Eq. (1)

4πMzQ1 = ρxx(αxy − Sσxy)

= ρxx

(
αic

xy − Sσ ic
xy

) + ρxx

(
αsj

xy − Sσ sj
xy

)
, (4)

where ρxx = 1/σxx is the resistivity of the sample and the
so-called Seebeck coefficient is defined by S ≡ Ex/∂xT =
αxx/σxx . The last line of Eq. (4) may be interpreted as
4πMz(Qic

1 + Q
sj
1 ), where the intrinsic contribution to the

anomalous Nernst coefficient is denoted by Qic
1 and the

side-jump contribution is denoted by Q
sj
1 . While the Seebeck

coefficient S describes the conversion of a thermal current
into a longitudinal electrical current, the Nernst coefficient
Q1 is a measure of the corresponding transverse effect. Even
though the value of the temperature gradient −∂xT and
the strength of the magnetic induction Bz do not appear in
Eq. (4), they seem to have a great influence on the ANE
experimentally.38,39 In particular, Bz influences the magni-
tude of the magnetization and the corresponding electronic
structure. However, values for Q1, ρxx , αxy , S, σxy , and
Mz were not measured simultaneously in most experiments.
We therefore gathered values for the resistivity ρxx and
Seebeck coefficient S from various sources and computed the
scattering-independent contribution Q

ic+sj
1 = Qic

1 + Q
sj
1 to the

anomalous Nernst coefficient following Eq. (4) (details of this
procedure can be found in the Supplemental Material).27

A comparison of our calculated values with experimental
data is presented in Table I. The experimental values show
a considerable spread, which reflects the fact that the ANE
is found to depend sensitively on experimental details and
material-specific parameters. Nevertheless, it can clearly be
seen that the inclusion of the side-jump contribution is crucial
for Fe and FePt and lets theory and experiment match very
well: Q

ic+sj
1 is about 112% of the smaller experimental value

in Fe and 105% of the experimental value in FePt. For Co,
the side-jump contribution to Q

ic+sj
1 is relatively small and

only around 10% for both magnetization directions, but it
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FIG. 2. (Color online) Temperature dependence of the intrinsic
and side-jump contributions to the ANE. The squares at T = 0 K
stand for the values of α

sj
xy/T computed from Eq. (5).

still brings the theoretical value for the anomalous Nernst
coefficient closer to experiment. The lack of better agreement
may be due to the fact that for the Seebeck coefficient in Co
solely experimental data for polycrystalline samples has been
available, but the corresponding value for monocrystalline
samples should be inserted into Eq. (4) instead. Remarkably,
when the magnetization is changed from the [001] into the
[110] direction, the sign change of αsj in Co at the Fermi
energy level is compensated by the sign change of σ sj, and the
net contribution Q

sj
1 stays roughly the same. For Ni, the value

calculated in bare GGA differs drastically from experiment,
and even has the wrong sign. However, when the value of U is
increased within GGA + U , the calculated value approaches
the experimental result in magnitude and sign. This suggests
that the main reason for the discrepancy between experiment
and theory in Ni originates from an inadequate description of
the electronic structure in the vicinity of the Fermi energy level
within GGA.40

Overall, the values in Table I demonstrate that the intrinsic
and side-jump contributions play an important role in the ANE
of ferromagnets. This finding is consistent with earlier studies
in this field, which examined the behavior of the anomalous
Nernst coefficient Q1 as a function of the resistivity ρxx . As
far as the scattering-independent contributions are concerned,
one would expect a linear dependence of the form Q1/T ∝
ρxx ,26 which is also observed in experiment.41–45 Our work
substantiates these observations with quantitative analysis.

The calculated temperature dependence of the thermoelec-
tric conductivity tensor for [001] magnetization direction is
depicted in Fig. 2. αic

xy is positive at 300 K, but changes its
sign in Fe and Co as the temperature is decreased. Below
50 K, it becomes positive again in Fe. The importance of
the side-jump contribution to the ANE is stressed by the
fact that for considered materials α

sj
xy is of the same order

of magnitude or even larger than αic
xy . In contrast to the

intrinsic contribution, α
sj
xy does not change its sign. While the

temperature dependence of α
sj
xy/T is almost absent in FePd

and FePt, it ranges from −2.6 × 10−3 A/(m K2) at T = 50 K
to −0.7 × 10−3 A/(m K2) at T = 350 K in Ni.

In the zero temperature limit, one can apply the Sommerfeld
expansion to the integral in Eq. (2) to obtain the standard Mott
formula which relates the ANE to the energy derivative of the
AHE:46

αxy

T
= −π2k2

B

3e

[
dσxy

dε

]
ε=εF

. (5)

For the intrinsic Nernst effect, it is known that the above
formula may be violated as T → 0 K.6 Indeed, we find that
the energy derivative of the intrinsic contribution converges
only very slowly with respect to the number of k points in
the Brillouin zone that are used for the evaluation of σ ic.
The slow convergence is due to the sensitivity of the Berry
curvature to the position of the Fermi energy, especially when
the latter approaches avoided band crossings or points of band
degeneracy.47 However, for the side-jump contribution, Mott’s
formula Eq. (5) holds, as can be seen by interpolating the
curves in Fig. 2 to T = 0 K. Apart from Ni, it yields a rather
good estimate for the value of α

sj
xy/T at room temperature as

well.
In summary, we presented the ab initio calculations of the

scattering-independent contributions to the ANE in several
ferromagnets. The theoretical values for the thermoelectric
conductivity tensor and the comparison of the calculated
anomalous Nernst coefficient with experiment suggests that
the ANE in elementary Fe, Co, Ni, in the ferromagnetic alloy
FePt, and presumably also in FePd is largely caused by the
intrinsic and side-jump mechanisms. Discrepancies between
theory and experiment in Ni are likely due to the imprecise
description of correlation effects within bare GGA, which can
be remedied by GGA + U calculations.

We thank J. Sinova for fruitful discussions and gratefully
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