33 research outputs found

    First-Order Logical Duality

    Get PDF
    From a logical point of view, Stone duality for Boolean algebras relates theories in classical propositional logic and their collections of models. The theories can be seen as presentations of Boolean algebras, and the collections of models can be topologized in such a way that the theory can be recovered from its space of models. The situation can be cast as a formal duality relating two categories of syntax and semantics, mediated by homming into a common dualizing object, in this case 2. In the present work, we generalize the entire arrangement from propositional to first-order logic. Boolean algebras are replaced by Boolean categories presented by theories in first-order logic, and spaces of models are replaced by topological groupoids of models and their isomorphisms. A duality between the resulting categories of syntax and semantics, expressed first in the form of a contravariant adjunction, is established by homming into a common dualizing object, now \Sets, regarded once as a boolean category, and once as a groupoid equipped with an intrinsic topology. The overall framework of our investigation is provided by topos theory. Direct proofs of the main results are given, but the specialist will recognize toposophical ideas in the background. Indeed, the duality between syntax and semantics is really a manifestation of that between algebra and geometry in the two directions of the geometric morphisms that lurk behind our formal theory. Along the way, we construct the classifying topos of a decidable coherent theory out of its groupoid of models via a simplified covering theorem for coherent toposes.Comment: Final pre-print version. 62 page

    Topological Representation of Geometric Theories

    Full text link
    Using Butz and Moerdijk's topological groupoid representation of a topos with enough points, a `syntax-semantics' duality for geometric theories is constructed. The emphasis is on a logical presentation, starting with a description of the semantical topological groupoid of models and isomorphisms of a theory and a direct proof that this groupoid represents its classifying topos. Using this representation, a contravariant adjunction is constructed between theories and topological groupoids. The restriction of this adjunction yields a contravariant equivalence between theories with enough models and semantical groupoids. Technically a variant of the syntax-semantics duality constructed in [Awodey and Forssell, arXiv:1008.3145v1] for first-order logic, the construction here works for arbitrary geometric theories and uses a slice construction on the side of groupoids---reflecting the use of `indexed' models in the representation theorem---which in several respects simplifies the construction and allows for an intrinsic characterization of the semantic side.Comment: 32 pages. This is the first pre-print version, the final revised version can be found at http://onlinelibrary.wiley.com/doi/10.1002/malq.201100080/abstract (posting of which is not allowed by Wiley). Changes in v2: updated comment

    Ionads

    Get PDF
    The notion of Grothendieck topos may be considered as a generalisation of that of topological space, one in which the points of the space may have non-trivial automorphisms. However, the analogy is not precise, since in a topological space, it is the points which have conceptual priority over the open sets, whereas in a topos it is the other way around. Hence a topos is more correctly regarded as a generalised locale, than as a generalised space. In this article we introduce the notion of ionad, which stands in the same relationship to a topological space as a (Grothendieck) topos does to a locale. We develop basic aspects of their theory and discuss their relationship with toposes.Comment: 24 pages; v2: diverse revisions; v3: chopped about in face of trenchant and insightful referee feedbac

    The Universal Theory of First Order Algebras and Various Reducts

    Full text link
    First order formulas in a relational signature can be considered as operations on the relations of an underlying set, giving rise to multisorted algebras we call first order algebras. We present universal axioms so that an algebra satisfies the axioms iff it embeds into a first order algebra. Importantly, our argument is modular and also works for, e.g., the positive existential algebras (where we restrict attention to the positive existential formulas) and the quantifier-free algebras. We also explain the relationship to theories, and indicate how to add in function symbols.Comment: 30 page

    Morita Equivalence

    Get PDF
    Logicians and philosophers of science have proposed various formal criteria for theoretical equivalence. In this paper, we examine two such proposals: definitional equivalence and categorical equivalence. In order to show precisely how these two well-known criteria are related to one another, we investigate an intermediate criterion called Morita equivalence.Comment: 30 page

    Functorial Data Migration

    Get PDF
    In this paper we present a simple database definition language: that of categories and functors. A database schema is a small category and an instance is a set-valued functor on it. We show that morphisms of schemas induce three "data migration functors", which translate instances from one schema to the other in canonical ways. These functors parameterize projections, unions, and joins over all tables simultaneously and can be used in place of conjunctive and disjunctive queries. We also show how to connect a database and a functional programming language by introducing a functorial connection between the schema and the category of types for that language. We begin the paper with a multitude of examples to motivate the definitions, and near the end we provide a dictionary whereby one can translate database concepts into category-theoretic concepts and vice-versa.Comment: 30 page
    corecore