3 research outputs found

    A framework for goal-oriented discovery of resources in the RESTful architecture

    Get PDF
    One of the challenges facing the current web is the efficient use of all the available information. The Web 2.0 phenomenon has favored the creation of contents by average users, and thus the amount of information that can be found for diverse topics has grown exponentially in the last years. Initiatives such as linked data are helping to build the Semantic Web, in which a set of standards are proposed for the exchange of data among heterogeneous systems. However, these standards are sometimes not used, and there are still plenty of websites that require naive techniques to discover their contents and services. This paper proposes an integrated framework for content and service discovery and extraction. The framework is divided into several layers where the discovery of contents and services is made in a representational stateless transfer system such as the web. It employs several web mining techniques as well as feature-oriented modeling for the discovery of cross-cutting features in web resources. The framework is used in a scenario of electronic newspapers. An intelligent agent crawls the web for related news, and uses services and visits links automatically according to its goal. This scenario illustrates how the discovery is made at different levels and how the use of semantics helps implement an agent that performs high-level tasks

    A teachable semi-automatic web information extraction system based on evolved regular expression patterns

    Get PDF
    This thesis explores Web Information Extraction (WIE) and how it has been used in decision making and to support businesses in their daily operations. The research focuses on a WIE system based on Genetic Programming (GP) with an extensible model to enhance the automatic extractor. This uses a human as a teacher to identify and extract relevant information from the semi-structured HTML webpages. Regular expressions, which have been chosen as the pattern matching tool, are automatically generated based on the training data to provide an improved grammar and lexicon. This particularly benefits the GP system which may need to extend its lexicon in the presence of new tokens in the web pages. These tokens allow the GP method to produce new extraction patterns for new requirements
    corecore