6,462 research outputs found

    Extending ACL2 with SMT Solvers

    Full text link
    We present our extension of ACL2 with Satisfiability Modulo Theories (SMT) solvers using ACL2's trusted clause processor mechanism. We are particularly interested in the verification of physical systems including Analog and Mixed-Signal (AMS) designs. ACL2 offers strong induction abilities for reasoning about sequences and SMT complements deduction methods like ACL2 with fast nonlinear arithmetic solving procedures. While SAT solvers have been integrated into ACL2 in previous work, SMT methods raise new issues because of their support for a broader range of domains including real numbers and uninterpreted functions. This paper presents Smtlink, our clause processor for integrating SMT solvers into ACL2. We describe key design and implementation issues and describe our experience with its use.Comment: In Proceedings ACL2 2015, arXiv:1509.0552

    Analog and Mixed Signal Verification using Satisfiability Solver on Discretized Models

    Full text link
    With increasing demand of performance constraints and the ever reducing size of the IC chips, analog and mixed-signal designs have become indispensable and increasingly complex in modern CMOS technologies. This has resulted in the rise of stochastic behavior in circuits, making it important to detect all the corner cases and verify the correct functionality of the design under all circumstances during the earlier stages of the design process. It can be achieved by functional or formal verification methods, which are still widely unexplored for Analog and Mixed-Signal (AMS) designs. Design Verification is a process to validate the performance of the system in accordance with desired specifications. Functional verification relies on simulating different combinations of inputs for maximum state space coverage. With the exponential increase in the complexity of circuits, traditional functional verification techniques are getting more and more inadequate in terms of exhaustiveness of the solution. Formal verification attempts to provide a mathematical proof for the correctness of the design regardless of the circumstances. Thus, it is possible to get 100% coverage using formal verification. However, it requires advanced mathematics knowledge and thus is not feasible for all applications. In this thesis, we present a technique for analog and mixed-signal verification targeting DC verification using Berkeley Short-channel Igfet Models (BSIM) for approximation. The verification problem is first defined using the state space equations for the given circuit and applying Satisfiability Modulo Theories (SMT) solver to determine a region that encloses complete DC equilibrium of the circuit. The technique is applied to an example circuit and the results are analyzed in turns of runtime effectiveness

    Hybrid Verification for Analog and Mixed-signal Circuits

    Get PDF
    With increasing design complexity and reliability requirements, analog and mixedsignal (AMS) verification manifests itself as a key bottleneck. While formal methods and machine learning have been proposed for AMS verification, these two types of techniques suffer from their own limitations, with the former being specifically limited by scalability and the latter by inherent errors in learning-based models. We present a new direction in AMS verification by proposing a hybrid formal/machinelearning- based verification technique (HFMV) to combine the best of the two worlds. HFMV builds formalism on the top of a machine learning model to verify AMS circuits efficiently while meeting a user-specified confidence level. Guided by formal checks, HFMV intelligently explores the high-dimensional parameter space of a given design by iteratively improving the machine learning model. As a result, it leads to accurate failure prediction in the case of a failing circuit or a reliable pass decision in the case of a good circuit. Our experimental results demonstrate that the proposed HFMV approach is capable of identifying hard-to-find failures which are completely missed by a huge number of random simulation samples while significantly cutting down training sample size and verification cycle time
    • …
    corecore