6,994 research outputs found

    Uncertainties in Forecasting: The Role of Strategic Modeling to Control Them

    Get PDF
    The growing concern about environmental depredations from transport activity at short-range and long-range horizon calls for policies aiming at reorientation of travel demand trends. However every transport policy is subject to risks, environmental or financial ones, and has often long-range effects. This explains the renewed interest in tools which allow detection of these risks and their consequences. There is however a methodological challenge in the elaboration of these simulation tools because we have to take into account many different uncertainties.This paper analyzes the uncertainties associated with transport forecasts using a strategic model recently developed for Lyon's conurbation. Different sources of error and uncertainly are tested and compared by means of the model. It is argued that a strategy of systematic exploration of uncertainly is the preferred way to cope with it and to detect long-term risks associated with transport policy.Travel modelling ; Strategic planning ; Urban area ; Uncertainty ; Forecasting

    Benefit-Cost Analysis for Transportation Planning and Public Policy: Towards Multimodal Demand Modeling

    Get PDF
    This report examines existing methods of benefit-cost analysis (BCA) in two areas, transportation policy and transportation planning, and suggests ways of modifying these methods to account for travel within a multimodal system. Although the planning and policy contexts differ substantially, this report shows how important multimodal impacts can be incorporated into both by using basic econometric techniques and even simpler rule-of-thumb methods. Case studies in transportation planning focus on the California Department of Transportation (Caltrans), but benchmark California’s competencies by exploring methods used by other states and local governments. The report concludes with a list and discussion of recommendations for improving transportation planning models and methods. These will have immediate use to decision makers at Caltrans and other state DOTs as they consider directions for developing new planning capabilities. This project also identifies areas, and lays groundwork, for future research. Finally, by fitting the planning models into the broader context of transportation policy, this report will serve as a resource for students and others who wish to better understand BCA and its use in practice

    Scalable Deep Traffic Flow Neural Networks for Urban Traffic Congestion Prediction

    Full text link
    Tracking congestion throughout the network road is a critical component of Intelligent transportation network management systems. Understanding how the traffic flows and short-term prediction of congestion occurrence due to rush-hour or incidents can be beneficial to such systems to effectively manage and direct the traffic to the most appropriate detours. Many of the current traffic flow prediction systems are designed by utilizing a central processing component where the prediction is carried out through aggregation of the information gathered from all measuring stations. However, centralized systems are not scalable and fail provide real-time feedback to the system whereas in a decentralized scheme, each node is responsible to predict its own short-term congestion based on the local current measurements in neighboring nodes. We propose a decentralized deep learning-based method where each node accurately predicts its own congestion state in real-time based on the congestion state of the neighboring stations. Moreover, historical data from the deployment site is not required, which makes the proposed method more suitable for newly installed stations. In order to achieve higher performance, we introduce a regularized Euclidean loss function that favors high congestion samples over low congestion samples to avoid the impact of the unbalanced training dataset. A novel dataset for this purpose is designed based on the traffic data obtained from traffic control stations in northern California. Extensive experiments conducted on the designed benchmark reflect a successful congestion prediction

    What Matters Most in Transportation Demand Model Specifications: A Comparison of Outputs in a Mid-size Network

    Get PDF
    This paper examines the impact of travel demand modeling (TDM) disaggregation techniques in the context of medium-sized communities. Specific TDM improvement strategies are evaluated for predictive power and flexibility with case studies based on the Tyler, Texas, network. Results suggest that adding time-of-day disaggregation, particularly in conjunction with multi-class assignment, to a basic TDM framework has the most significant impacts on outputs. Other strategies shown to impact outputs include adding a logit mode choice model and incorporating a congestion feedback loop. For resource-constrained communities, these results show how model output and flexibility vary for different settings and scenarios.BACKGROUND Transportation directly provides for the mobility of people and goods, while influencing land use patterns and economic activity, which in turn affect air quality, social equity, and investment decisions. Driven by the need to forecast future transportation demand and system performance, Manheim (1979) and Florian et al. (1988) introduced a transportation analysis framework for traffic forecasting using aggregated data that provide the basis for what is known as the four-step model: a process involving trip generation, then trip distribution and mode choice, followed by route choice. Aggregating demographic data at the zone level, the four-step model generates trip productions based on socioeconomic data (e.g., household counts by income and size) and trip attractions primarily based on jobs counts. The model then proportionally distributes trips between each origin and destination (OD) zone pair based on competing travel attractions and impedances, under the assumption that OD pairings with higher travel costs draw fewer trips. Trips between each OD pair are split among a variety of transportation modes, allocating trips to private vehicle, transit, or othe

    Internal report cluster 1: Urban freight innovations and solutions for sustainable deliveries (1/4)

    Get PDF
    Technical report about sustainable urban freight solutions, part 1 of

    A Taxonomy of Traffic Forecasting Regression Problems From a Supervised Learning Perspective

    Get PDF
    One contemporary policy to deal with traffic congestion is the design and implementation of forecasting methods that allow users to plan ahead of time and decision makers to improve traffic management. Current data availability and growing computational capacities have increased the use of machine learning (ML) to address traffic prediction, which is mostly modeled as a supervised regression problem. Although some studies have presented taxonomies to sort the literature in this field, they are mostly oriented to classify the ML methods applied and a little effort has been directed to categorize the traffic forecasting problems approached by them. As far as we know, there is no comprehensive taxonomy that classifies these problems from the point of view of both traffic and ML. In this paper, we propose a taxonomy to categorize the aforementioned problems from both traffic and a supervised regression learning perspective. The taxonomy aims at unifying and consolidating categorization criteria related to traffic and it introduces new criteria to classify the problems in terms of how they are modeled from a supervised regression approach. The traffic forecasting literature, from 2000 to 2019, is categorized using this taxonomy to illustrate its descriptive power. From this categorization, different remarks are discussed regarding the current gaps and trends in the addressed traffic forecasting area
    • …
    corecore