31,616 research outputs found

    Deciding first-order properties of nowhere dense graphs

    Full text link
    Nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of "sparse graphs" including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes of bounded expansion. We show that deciding properties of graphs definable in first-order logic is fixed-parameter tractable on nowhere dense graph classes. At least for graph classes closed under taking subgraphs, this result is optimal: it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, then C must be nowhere dense (under a reasonable complexity theoretic assumption). As a by-product, we give an algorithmic construction of sparse neighbourhood covers for nowhere dense graphs. This extends and improves previous constructions of neighbourhood covers for graph classes with excluded minors. At the same time, our construction is considerably simpler than those. Our proofs are based on a new game-theoretic characterisation of nowhere dense graphs that allows for a recursive version of locality-based algorithms on these classes. On the logical side, we prove a "rank-preserving" version of Gaifman's locality theorem.Comment: 30 page

    On First-Order Definable Colorings

    Full text link
    We address the problem of characterizing HH-coloring problems that are first-order definable on a fixed class of relational structures. In this context, we give several characterizations of a homomorphism dualities arising in a class of structure

    On the number of types in sparse graphs

    Full text link
    We prove that for every class of graphs C\mathcal{C} which is nowhere dense, as defined by Nesetril and Ossona de Mendez, and for every first order formula ϕ(xˉ,yˉ)\phi(\bar x,\bar y), whenever one draws a graph GCG\in \mathcal{C} and a subset of its nodes AA, the number of subsets of AyˉA^{|\bar y|} which are of the form {vˉAyˉ ⁣:Gϕ(uˉ,vˉ)}\{\bar v\in A^{|\bar y|}\, \colon\, G\models\phi(\bar u,\bar v)\} for some valuation uˉ\bar u of xˉ\bar x in GG is bounded by O(Axˉ+ϵ)\mathcal{O}(|A|^{|\bar x|+\epsilon}), for every ϵ>0\epsilon>0. This provides optimal bounds on the VC-density of first-order definable set systems in nowhere dense graph classes. We also give two new proofs of upper bounds on quantities in nowhere dense classes which are relevant for their logical treatment. Firstly, we provide a new proof of the fact that nowhere dense classes are uniformly quasi-wide, implying explicit, polynomial upper bounds on the functions relating the two notions. Secondly, we give a new combinatorial proof of the result of Adler and Adler stating that every nowhere dense class of graphs is stable. In contrast to the previous proofs of the above results, our proofs are completely finitistic and constructive, and yield explicit and computable upper bounds on quantities related to uniform quasi-wideness (margins) and stability (ladder indices)

    First-order limits, an analytical perspective

    Full text link
    In this paper we present a novel approach to graph (and structural) limits based on model theory and analysis. The role of Stone and Gelfand dualities is displayed prominently and leads to a general theory, which we believe is naturally emerging. This approach covers all the particular examples of structural convergence and it put the whole in new context. As an application, it leads to new intermediate examples of structural convergence and to a "grand conjecture" dealing with sparse graphs. We survey the recent developments

    Nowhere dense graph classes, stability, and the independence property

    Full text link
    A class of graphs is nowhere dense if for every integer r there is a finite upper bound on the size of cliques that occur as (topological) r-minors. We observe that this tameness notion from algorithmic graph theory is essentially the earlier stability theoretic notion of superflatness. For subgraph-closed classes of graphs we prove equivalence to stability and to not having the independence property.Comment: 9 page

    Testing first-order properties for subclasses of sparse graphs

    Get PDF
    We present a linear-time algorithm for deciding first-order (FO) properties in classes of graphs with bounded expansion, a notion recently introduced by Nesetril and Ossona de Mendez. This generalizes several results from the literature, because many natural classes of graphs have bounded expansion: graphs of bounded tree-width, all proper minor-closed classes of graphs, graphs of bounded degree, graphs with no subgraph isomorphic to a subdivision of a fixed graph, and graphs that can be drawn in a fixed surface in such a way that each edge crosses at most a constant number of other edges. We deduce that there is an almost linear-time algorithm for deciding FO properties in classes of graphs with locally bounded expansion. More generally, we design a dynamic data structure for graphs belonging to a fixed class of graphs of bounded expansion. After a linear-time initialization the data structure allows us to test an FO property in constant time, and the data structure can be updated in constant time after addition/deletion of an edge, provided the list of possible edges to be added is known in advance and their simultaneous addition results in a graph in the class. All our results also hold for relational structures and are based on the seminal result of Nesetril and Ossona de Mendez on the existence of low tree-depth colorings
    corecore