21,519 research outputs found

    Sparsity-Based Error Detection in DC Power Flow State Estimation

    Full text link
    This paper presents a new approach for identifying the measurement error in the DC power flow state estimation problem. The proposed algorithm exploits the singularity of the impedance matrix and the sparsity of the error vector by posing the DC power flow problem as a sparse vector recovery problem that leverages the structure of the power system and uses l1l_1-norm minimization for state estimation. This approach can provably compute the measurement errors exactly, and its performance is robust to the arbitrary magnitudes of the measurement errors. Hence, the proposed approach can detect the noisy elements if the measurements are contaminated with additive white Gaussian noise plus sparse noise with large magnitude. The effectiveness of the proposed sparsity-based decomposition-DC power flow approach is demonstrated on the IEEE 118-bus and 300-bus test systems

    A variational approach to path estimation and parameter inference of hidden diffusion processes

    Full text link
    We consider a hidden Markov model, where the signal process, given by a diffusion, is only indirectly observed through some noisy measurements. The article develops a variational method for approximating the hidden states of the signal process given the full set of observations. This, in particular, leads to systematic approximations of the smoothing densities of the signal process. The paper then demonstrates how an efficient inference scheme, based on this variational approach to the approximation of the hidden states, can be designed to estimate the unknown parameters of stochastic differential equations. Two examples at the end illustrate the efficacy and the accuracy of the presented method.Comment: 37 pages, 2 figures, revise

    Compressive Measurement Designs for Estimating Structured Signals in Structured Clutter: A Bayesian Experimental Design Approach

    Full text link
    This work considers an estimation task in compressive sensing, where the goal is to estimate an unknown signal from compressive measurements that are corrupted by additive pre-measurement noise (interference, or clutter) as well as post-measurement noise, in the specific setting where some (perhaps limited) prior knowledge on the signal, interference, and noise is available. The specific aim here is to devise a strategy for incorporating this prior information into the design of an appropriate compressive measurement strategy. Here, the prior information is interpreted as statistics of a prior distribution on the relevant quantities, and an approach based on Bayesian Experimental Design is proposed. Experimental results on synthetic data demonstrate that the proposed approach outperforms traditional random compressive measurement designs, which are agnostic to the prior information, as well as several other knowledge-enhanced sensing matrix designs based on more heuristic notions.Comment: 5 pages, 4 figures. Accepted for publication at The Asilomar Conference on Signals, Systems, and Computers 201
    • …
    corecore