99 research outputs found

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    A Computational Economy for Grid Computing and its Implementation in the Nimrod-G Resource Brok

    Full text link
    Computational Grids, coupling geographically distributed resources such as PCs, workstations, clusters, and scientific instruments, have emerged as a next generation computing platform for solving large-scale problems in science, engineering, and commerce. However, application development, resource management, and scheduling in these environments continue to be a complex undertaking. In this article, we discuss our efforts in developing a resource management system for scheduling computations on resources distributed across the world with varying quality of service. Our service-oriented grid computing system called Nimrod-G manages all operations associated with remote execution including resource discovery, trading, scheduling based on economic principles and a user defined quality of service requirement. The Nimrod-G resource broker is implemented by leveraging existing technologies such as Globus, and provides new services that are essential for constructing industrial-strength Grids. We discuss results of preliminary experiments on scheduling some parametric computations using the Nimrod-G resource broker on a world-wide grid testbed that spans five continents

    Contributions to Desktop Grid Computing : From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures

    Get PDF
    Since the mid 90’s, Desktop Grid Computing - i.e the idea of using a large number of remote PCs distributed on the Internet to execute large parallel applications - has proved to be an efficient paradigm to provide a large computational power at the fraction of the cost of a dedicated computing infrastructure.This document presents my contributions over the last decade to broaden the scope of Desktop Grid Computing. My research has followed three different directions. The first direction has established new methods to observe and characterize Desktop Grid resources and developed experimental platforms to test and validate our approach in conditions close to reality. The second line of research has focused on integrating Desk- top Grids in e-science Grid infrastructure (e.g. EGI), which requires to address many challenges such as security, scheduling, quality of service, and more. The third direction has investigated how to support large-scale data management and data intensive applica- tions on such infrastructures, including support for the new and emerging data-oriented programming models.This manuscript not only reports on the scientific achievements and the technologies developed to support our objectives, but also on the international collaborations and projects I have been involved in, as well as the scientific mentoring which motivates my candidature for the Habilitation `a Diriger les Recherches

    Intermediate QoS Prototype for the EDGI Infrastructure

    Get PDF
    This document provides the first deliverable of EDGI JRA2. It is produced by the INRIA team, the SZTAKI team, the LAL/IN2P3 team and the University of Coimbra team. This document aims at describing achievements and results of JRA2 tasks "Advanced QoS Scheduler and Oracle" and "Support In Science Gateway". Hybrid Distributed Computing Infrastructures (DCIs) allow users to combine Grids, Desktop Grids, Clouds, etc. to obtain for their users large computing capabilities. The EDGI infrastructure belongs to this kind of DCIs. The document presents the SpeQuloS framework to provide quality of service (QoS) for application executed on the EDGI infrastructure. It also introduces EDGI QoS portal, an user-friendly and integrated access to QoS features for users of EDGI infrastructure. In this document, we first introduce new results from JRA2.1 task, which collected and analyzed batch execution on Desktop Grid. Then, we present the advanced Cloud Scheduling and Oracle strategies designed inside the SpeQuloS framework (task JRA2.2). We demonstrate efficiency of these strategies using performance evaluation carried out with simulations. Next, we introduce Credit System architecture and QoS user portal as part of the JRA2 Support In Science Gateway (task JRA2.3). Finally, we conclude and provide references to JRA2 production.Ce document fournit le premier livrable pour la tâche JRA2 du projet européen European Desktop Grid Initiative (FP7 EDGI). Il est produit par les équipes de l'INRIA, de SZTAKI, du LAL/IN2P3 et de l'Université de Coimbra. Ce document vise à décrire les réalisations et les résultats qui concernent la qualité de service pour l'infrastructure de grilles de PCs européenne EDGI

    Designing a Resource Broker for Heterogeneous Grids

    Full text link
    Grids provide uniform access to aggregations of heterogeneous resources and services such as computers, networks and storage owned by multiple organizations. However, such a dynamic environment poses many challenges for application composition and deployment. In this paper, we present the design of the Gridbus Grid resource broker that allows users to create applications and specify different objectives through different interfaces without having to deal with the complexity of Grid infrastructure. We present the unique requirements that motivated our design and discuss how these provide flexibility in extending the functionality of the broker to support different low-level middlewares and user interfaces. We evaluate the broker with different job profiles and Grid middleware and conclude with the lessons learnt from our development experience.Comment: 26 pages, 15 figure
    • …
    corecore