69 research outputs found

    Equivariant lattice bases

    Full text link
    We study lattices in free abelian groups of infinite rank that are invariant under the action of the infinite symmetric group, with emphasis on finiteness of their equivariant bases. Our framework provides a new method for proving finiteness results in algebraic statistics. As an illustration, we show that every invariant lattice in Z(N×[c])\mathbb{Z}^{(\mathbb{N}\times[c])}, where c∈Nc\in\mathbb{N}, has a finite equivariant Graver basis. This result generalizes and strengthens several finiteness results about Markov bases in the literature.Comment: 31 page

    Noetherianity for infinite-dimensional toric varieties

    Get PDF
    We consider a large class of monomial maps respecting an action of the infinite symmetric group, and prove that the toric ideals arising as their kernels are finitely generated up to symmetry. Our class includes many important examples where Noetherianity was recently proved or conjectured. In particular, our results imply Hillar-Sullivant's Independent Set Theorem and settle several finiteness conjectures due to Aschenbrenner, Martin del Campo, Hillar, and Sullivant. We introduce a matching monoid and show that its monoid ring is Noetherian up to symmetry. Our approach is then to factorize a more general equivariant monomial map into two parts going through this monoid. The kernels of both parts are finitely generated up to symmetry: recent work by Yamaguchi-Ogawa-Takemura on the (generalized) Birkhoff model provides an explicit degree bound for the kernel of the first part, while for the second part the finiteness follows from the Noetherianity of the matching monoid ring.Comment: 20 page

    Constructive degree bounds for group-based models

    Full text link
    Group-based models arise in algebraic statistics while studying evolution processes. They are represented by embedded toric algebraic varieties. Both from the theoretical and applied point of view one is interested in determining the ideals defining the varieties. Conjectural bounds on the degree in which these ideals are generated were given by Sturmfels and Sullivant. We prove that for the 3-Kimura model, corresponding to the group G=Z2xZ2, the projective scheme can be defined by an ideal generated in degree 4. In particular, it is enough to consider degree 4 phylogenetic invariants to test if a given point belongs to the variety. We also investigate G-models, a generalization of abelian group-based models. For any G-model, we prove that there exists a constant dd, such that for any tree, the associated projective scheme can be defined by an ideal generated in degree at most d.Comment: Boundedness results for equations defining the projective scheme were extended to G-models (including 2-Kimura and all JC

    Noetherianity up to symmetry

    Get PDF
    These lecture notes for the 2013 CIME/CIRM summer school Combinatorial Algebraic Geometry deal with manifestly infinite-dimensional algebraic varieties with large symmetry groups. So large, in fact, that subvarieties stable under those symmetry groups are defined by finitely many orbits of equations---whence the title Noetherianity up to symmetry. It is not the purpose of these notes to give a systematic, exhaustive treatment of such varieties, but rather to discuss a few "personal favourites": exciting examples drawn from applications in algebraic statistics and multilinear algebra. My hope is that these notes will attract other mathematicians to this vibrant area at the crossroads of combinatorics, commutative algebra, algebraic geometry, statistics, and other applications.Comment: To appear in Springer's LNM C.I.M.E. series; several typos fixe

    Bibliographie

    Get PDF

    Gr\"obner methods for representations of combinatorial categories

    Full text link
    Given a category C of a combinatorial nature, we study the following fundamental question: how does the combinatorial behavior of C affect the algebraic behavior of representations of C? We prove two general results. The first gives a combinatorial criterion for representations of C to admit a theory of Gr\"obner bases. From this, we obtain a criterion for noetherianity of representations. The second gives a combinatorial criterion for a general "rationality" result for Hilbert series of representations of C. This criterion connects to the theory of formal languages, and makes essential use of results on the generating functions of languages, such as the transfer-matrix method and the Chomsky-Sch\"utzenberger theorem. Our work is motivated by recent work in the literature on representations of various specific categories. Our general criteria recover many of the results on these categories that had been proved by ad hoc means, and often yield cleaner proofs and stronger statements. For example: we give a new, more robust, proof that FI-modules (originally introduced by Church-Ellenberg-Farb), and a family of natural generalizations, are noetherian; we give an easy proof of a generalization of the Lannes-Schwartz artinian conjecture from the study of generic representation theory of finite fields; we significantly improve the theory of Δ\Delta-modules, introduced by Snowden in connection to syzygies of Segre embeddings; and we establish fundamental properties of twisted commutative algebras in positive characteristic.Comment: 41 pages; v2: Moved old Sections 3.4, 10, 11, 13.2 and connected text to arxiv:1410.6054v1, Section 13.1 removed and will appear elsewhere; v3: substantial revision and reorganization of section
    • …
    corecore