12,596 research outputs found

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Towards Scalable Synthesis of Stochastic Control Systems

    Full text link
    Formal control synthesis approaches over stochastic systems have received significant attention in the past few years, in view of their ability to provide provably correct controllers for complex logical specifications in an automated fashion. Examples of complex specifications of interest include properties expressed as formulae in linear temporal logic (LTL) or as automata on infinite strings. A general methodology to synthesize controllers for such properties resorts to symbolic abstractions of the given stochastic systems. Symbolic models are discrete abstractions of the given concrete systems with the property that a controller designed on the abstraction can be refined (or implemented) into a controller on the original system. Although the recent development of techniques for the construction of symbolic models has been quite encouraging, the general goal of formal synthesis over stochastic control systems is by no means solved. A fundamental issue with the existing techniques is the known "curse of dimensionality," which is due to the need to discretize state and input sets and that results in an exponential complexity over the number of state and input variables in the concrete system. In this work we propose a novel abstraction technique for incrementally stable stochastic control systems, which does not require state-space discretization but only input set discretization, and that can be potentially more efficient (and thus scalable) than existing approaches. We elucidate the effectiveness of the proposed approach by synthesizing a schedule for the coordination of two traffic lights under some safety and fairness requirements for a road traffic model. Further we argue that this 5-dimensional linear stochastic control system cannot be studied with existing approaches based on state-space discretization due to the very large number of generated discrete states.Comment: 22 pages, 3 figures. arXiv admin note: text overlap with arXiv:1407.273

    Stochastic stability for a model representing the intake manifold pressure of an automotive engine

    Get PDF
    The paper presents conditions to assure stochastic stability for a nonlinear model. The proposed model is used to represent the input-output dynamics of the angle of aperture of the throttle valve (input) and the manifold absolute pressure (output) in an automotive spark-ignition engine. The automotive model is second moment stable, as stated by the theoretical result—data collected from real-time experiments supports this finding.Peer ReviewedPostprint (author's final draft
    • …
    corecore