2,111 research outputs found

    Tractability of multivariate analytic problems

    Full text link
    In the theory of tractability of multivariate problems one usually studies problems with finite smoothness. Then we want to know which ss-variate problems can be approximated to within ε\varepsilon by using, say, polynomially many in ss and ε1\varepsilon^{-1} function values or arbitrary linear functionals. There is a recent stream of work for multivariate analytic problems for which we want to answer the usual tractability questions with ε1\varepsilon^{-1} replaced by 1+logε11+\log \varepsilon^{-1}. In this vein of research, multivariate integration and approximation have been studied over Korobov spaces with exponentially fast decaying Fourier coefficients. This is work of J. Dick, G. Larcher, and the authors. There is a natural need to analyze more general analytic problems defined over more general spaces and obtain tractability results in terms of ss and 1+logε11+\log \varepsilon^{-1}. The goal of this paper is to survey the existing results, present some new results, and propose further questions for the study of tractability of multivariate analytic questions

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    Some Results on the Complexity of Numerical Integration

    Full text link
    This is a survey (21 pages, 124 references) written for the MCQMC 2014 conference in Leuven, April 2014. We start with the seminal paper of Bakhvalov (1959) and end with new results on the curse of dimension and on the complexity of oscillatory integrals. Some small errors of earlier versions are corrected

    Rank-1 lattice rules for multivariate integration in spaces of permutation-invariant functions: Error bounds and tractability

    Full text link
    We study multivariate integration of functions that are invariant under permutations (of subsets) of their arguments. We find an upper bound for the nnth minimal worst case error and show that under certain conditions, it can be bounded independent of the number of dimensions. In particular, we study the application of unshifted and randomly shifted rank-11 lattice rules in such a problem setting. We derive conditions under which multivariate integration is polynomially or strongly polynomially tractable with the Monte Carlo rate of convergence O(n1/2)O(n^{-1/2}). Furthermore, we prove that those tractability results can be achieved with shifted lattice rules and that the shifts are indeed necessary. Finally, we show the existence of rank-11 lattice rules whose worst case error on the permutation- and shift-invariant spaces converge with (almost) optimal rate. That is, we derive error bounds of the form O(nλ/2)O(n^{-\lambda/2}) for all 1λ<2α1 \leq \lambda < 2 \alpha, where α\alpha denotes the smoothness of the spaces. Keywords: Numerical integration, Quadrature, Cubature, Quasi-Monte Carlo methods, Rank-1 lattice rules.Comment: 26 pages; minor changes due to reviewer's comments; the final publication is available at link.springer.co
    corecore